Publications

Results 176–200 of 202

Search results

Jump to search filters

5.2 mW single-mode power from a coupled-resonator vertical-cavity laser

Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS

Fischer, Arthur J.; Choquette, K.D.; Chow, Weng W.; Allerman, A.A.; Geib, K.M.

A record high fundamental-mode power of 5.1 mW was achieved from coupled-resonator vertical-cavity lasers (CRVCLs). In conventional VCSELs, the extent to which the gain volume may be increased is limited by the onset of multi-mode operation. Results indicate that this limitation is circumvented in a coupled-resonator device allowing high power fundamental-mode operation.

More Details

Bistable Output from a Coupled-Resonator Vertical-Cavity Laser Diode

Applied Physics Letters

Fischer, Arthur J.; Choquette, K.D.; Chow, Weng W.; Allerman, A.A.; Geib, K.M.

The authors report a monolithic coupled-resonator vertical-cavity laser with an ion-implanted top cavity and a selectively oxidized bottom cavity which exhibits bistable behavior in the light output versus injection current. Large bistability regions over current ranges as wide as 18 mA have been observed with on/off contrast ratios of greater than 20 dB. The position and width of the bistability region can be varied by changing the bias to the top cavity. Switching between on and off states can be accomplished with changes as small as 250 {micro}W to the electrical power applied to the top cavity. Theoretical analysis suggests that the bistable behavior is the response of the nonlinear susceptibility in the top cavity to the changes in the bottom intracavity laser intensity as the bottom cavity reaches the thermal rollover point.

More Details

GaInNAs laser gain

Chow, Weng W.; Jones, E.D.; Modine, N.A.; Kurtz, S.R.; Allerman, A.A.

The optical gain spectra for GaInNAs/GaAs quantum wells are computed using a microscopic laser theory. From these spectra, the peak gain and carrier radiative decay rate as functions of carrier density are determined. These dependences allow the study of the lasing threshold current density of GaInNAs/GaAs quantum well structures.

More Details

Composite Resonator Surface Emitting Lasers

Fischer, Arthur J.; Choquette, K.D.; Chow, Weng W.; Allerman, A.A.; Geib, K.M.

The authors have developed electrically-injected coupled-resonator vertical-cavity lasers and have studied their novel properties. These monolithically grown coupled-cavity structures have been fabricated with either one active and one passive cavity or with two active cavities. All devices use a selectively oxidized current aperture in the lower cavity, while a proton implant was used in the active-active structures to confine current in the top active cavity. They have demonstrated optical modulation from active-passive devices where the modulation arises from dynamic changes in the coupling between the active and passive cavities. The laser intensity can be modulated by either forward or reverse biasing the passive cavity. They have also observed Q-switched pulses from active-passive devices with pulses as short as 150 ps. A rate equation approach is used to model the Q-switched operation yielding good agreement between the experimental and theoretical pulseshape. They have designed and demonstrated the operation of active-active devices which la.se simultaneously at both longitudinal cavity resonances. Extremely large bistable regions have also been observed in the light-current curves for active-active coupled resonator devices. This bistability can be used for high contrast switching with contrast ratios as high as 100:1. Coupled-resonator vertical-cavity lasers have shown enhanced mode selectivity which has allowed devices to lase with fundamental-mode output powers as high as 5.2 mW.

More Details

Q-switched operation of a coupled-resonator vertical-cavity laser diode

Applied Physics Letters

Fischer, Arthur J.; Chow, Weng W.; Choquette, K.D.; Allerman, A.A.; Geib, K.M.

The authors report Q-switched operation from an electrically-injected monolithic coupled-resonator structure which consists of an active cavity with InGaAs quantum wells optically coupled to a passive cavity. The passive cavity contains a bulk GaAs region which is reverse-biased to provide variable absorption at the lasing wavelength of 990 nm. Cavity coupling is utilized to effect large changes in output intensity with only very small changes in passive cavity absorption. The device is shown to produce pulses as short as 150 ps at repetition rates as high 4 GHz. A rate equation approach is used to model the Q-switched operation yielding good agreement between the experimental and theoretical pulse shape. Small-signal frequency response measurements also show a transition from a slower ({approximately} 300 MHZ) forward-biased modulation regime to a faster ({approximately} 2 GHz) modulation regime under reverse-bias operation.

More Details

Comparison of experimental and theoretical gain-current relations in GaInP quantum well lasers

Applied Physics Letters

Chow, Weng W.

The authors compare the results of a microscopic laser theory with gain and recombination currents obtained from experimental spontaneous emission spectra. The calculated absorption spectrum is first matched to that measured on a laser, ensuring that the quasi-Fermi levels for the calculation and the experiment (spontaneous emission and gain) are directly related. This allows one to determine the inhomogeneous broadening in their experimental samples. The only other inputs to the theory are literature values of the bulk material parameter. The authors then estimate the non-radiative recombination current associated with the well and wave-guide core from a comparison of measured and calculated recombination currents.

More Details

Design and performance of nitride-based UV LEDs

Proceedings of SPIE - The International Society for Optical Engineering

Crawford, Mary H.; Han, J.; Chow, Weng W.; Banas, Michael A.; Figiel, J.J.; Zhang, Lei; Shul, Randy J.

In this paper, we overview several of the critical materials growth, design and performance issues for nitride-based UV (<400 nm) LEDs. The critical issue of optical efficiency is presented through temperature-dependent photoluminescence studies of various UV active regions. These studies demonstrate enhanced optical efficiencies for active regions with In-containing alloys (InGaN, AlInGaN). We discuss the trade-off between the challenging growth of high Al containing alloys (AlGaN, AlGaInN), and the need for sufficient carrier confinement in UV heterostructures. Carrier leakage for various composition AlGaN barriers is examined through a calculation of the total unconfined carrier density in the quantum well system. We compare the performance of two distinct UV LED structures: GaN/AlGaN quantum well LEDs for λ<360 nm emission, and InGaN/AlGaInN quantum well LEDs for 370 nm<λ<390 nm emission.

More Details

Advanced laser diodes for sensing applications

Vawter, Gregory A.; Mar, Alan M.; Chow, Weng W.; Allerman, A.A.

The authors have developed diode lasers for short pulse duration and high peak pulse power in the 0.01--100.0 m pulsewidth regime. A primary goal of the program was producing up to 10 W while maintaining good far-field beam quality and ease of manufacturability for low cost. High peak power, 17 W, picosecond pulses have been achieved by gain switching of flared geometry waveguide lasers and amplifiers. Such high powers area world record for this type of diode laser. The light emission pattern from diode lasers is of critical importance for sensing systems such as range finding and chemical detection. They have developed a new integrated optical beam transformer producing rib-waveguide diode lasers with a symmetric, low divergence, output beam and increased upper power limits for irreversible facet damage.

More Details

Current Filament Semiconductor Lasers

Optics InfoBase Conference Papers

Zutavern, Fred J.; Baca, A.G.; Chow, Weng W.; Hafich, Michael J.; Hjalmarson, Harold P.; Loubriel, Guillermo M.; Mar, Alan M.; O'Malley, Martin W.; Vawter, Gregory A.

A new class of semiconductor laser is presented that does not require p-n junctions. Spectral narrowing, lasing thresholds, beam divergence, temporal narrowing, and energies are shown for these lasers based on current filaments in bulk GaAs.

More Details

Filamentation and Fundamental-Mode Operation in InGaN Quantum Well Lasers

Applied Physics Letters

Chow, Weng W.

Filamentation, and consequently output beam quality in InGaN quantum-well lasers are found to be strong functions of quantum-well width because of the interplay of quantum-confined Stark effect and many-body interactions. For an In{sub 0.2}Ga{sub 0.8}N/GaN gain medium the antiguiding factor in a thick 4nm quantum well is considerably smaller than that for a narrow 2nm one. As a result, lasers with the thicker quantum well maintain fundamental-mode operation with wider stripe widths and at significantly higher excitation levels.

More Details

Laser gain and threshold properties in compressive-strained and lattice-matched GaInNAs/GaAs quantum wells

Applied Physics Letters

Chow, Weng W.

The optical gain spectra for compressive-strained and lattice-matched GaInNAs/GaAs quantum wells are computed using a microscopic laser theory. From these spectra, the peak gain and carrier radiative decay rate as functions of carrier density are determined. These dependences allow the study of lasing threshold current density for different GaInNAs/GaAs laser structures. © 1999 American Institute of Physics.

More Details

Coupled Resonator Vertical Cavity Laser Diode

Applied Physics Letters

Fischer, Arthur J.; Choquette, K.D.; Chow, Weng W.; Hou, Hong Q.; Geib, K.M.

We report the operation of an electrically injected monolithic coupled resonator vertical cavity laser which consists of an active cavity containing In{sub x}Ga{sub 1{minus}x}As quantum wells optically coupled to a passive GaAs cavity. This device demonstrates novel modulation characteristics arising from dynamic changes in the coupling between the active and passive cavities. A composite mode theory is used to model the output modulation of the coupled resonator vertical cavity laser. It is shown that the laser intensity can be modulated by either forward or reverse biasing the passive cavity. Under forward biasing, the modulation is due to carrier induced changes in the refractive index, while for reverse bias operation the modulation is caused by field dependent cavity enhanced absorption.

More Details

Optics in the Multipole Approximation: From Atomic Systems to Solids

Optics Communication

Chow, Weng W.

Starting from the microscopic light-matter interaction in form of the minimal coupling Hamiltonian, the multipole approximation for the optical response of localized electrons in atomic systems is extended to delocalized electrons in solids. A spatial averaging procedure is used to derive the electromagnetic sources for macroscopic Maxwell's equations as well as the corresponding many particle Hamiltonian on a coarse grained length scale. The results are illustrated for semiconductor bulk material up to quadruple moments for the interband transitions, where gauge invariant equations of motion for the optical response are obtained.

More Details

Quantum Well Width Dependence of Threshold Current Density in InGaN Lasers

Applied Physics Letters

Chow, Weng W.

The quantum confined Stark effect was found to result in a strong quantum well width dependence of threshold current density in strained group-III nitride quantum well lasers. For an In{sub 0.2}Ga{sub 0.8}N/GaN structure with quantum well width in the neighborhood of 3.5nm, our analysis shows that the reduction in spontaneous emission loss by the electron-hole spatial separation outweighs the corresponding reduction in gain to produce a threshold current density minimum.

More Details

Microscopic theory of optical nonlinearities and spontaneous emission lifetime in group-III nitride quantum wells

Physical Review B - Condensed Matter and Materials Physics

Chow, Weng W.

Microscopic calculations of the absorption and luminescence spectra are presented for wide bandgap Ga1-xInxN/GaN quantum well systems. Whereas structures with narrow well widths exhibit the usual excitation-dependent bleaching of the exciton resonance without shifting spectral position, a significant blueshift of the exciton peak is obtained for wider quantum wells. This blueshift, which is also present in the excitation-dependent luminescence spectra, is attributed to the interplay between the screening of a strain induced piezoelectric field and the density dependence of many-body Coulomb effects. The calculations also show an over two orders of magnitude increase in the spontaneous electron-hole-pair lifetime with well width, due to the reduction of the electron-hole wave function overlap in the wider wells. The resulting decrease in spontaneous emission loss is predicted to lead to improved threshold properties in wide quantum well lasers. © 1999 The American Physical Society.

More Details

Piezoelectric Effects on the Optical Properties of GaN/Al(x)Ga(1-x)N Multiple Quantum Wells

Applied Physics Letters

Chow, Weng W.

Piezoelectric effects on the optical properties of GaN/AlGaN multiple quantum wells (MQWS) have been investigated by picosecond time-resolved photoluminescence (PL) measurements. For MQWS with well thickness 30 and 40 the excitonic transition peak positions at 10 K in continuous wave (CW) spectra are red-shifted with respect to the GaN epilayer by 17 meV and 57 meV, respectively. The time-resolved PL spectra of the 30 and 40 well MQWS reveal that the excitonic transition is in fact blue-shifted at early delay times due to quantum confinement of carriers. The spectral peak position shifts toward lower energies as the delay time increases and becomes red-shifted at longer delay times. We have demonstrated that the results described above is due to the presence of the piezoelectric field in the GaN wells of GaN/AlGaN MQWS subject to elastic strain together with screening of the photoexcited carriers. By comparing experimental and calculation results, we conclude that the piezoelectric field strength in GaN/Al.15G~.85N MQWS has a lower limit value of about 560 kV/cm: The electron and hole wave function distributions have also been obtained. The implication of our findings on the practical applications of GaN based optoelectronic devices is also discussed.

More Details

Theoretical Limit to the Laser Threshold Current Density in an InGaN Quantume Well Laser

Applied Physics Letters

Chow, Weng W.

This paper describes an investigation of the spontaneous emission limit to the laser threshold current density in an InGaN quantum well laser. The peak gain and spontaneous emission rate as functions of carrier density are com- puted using a microscopic laser theory. From these quantities, the minimum achievable threshold current density is determined for a given threshold gain. The dependence on quantum well width, and the effects of inhomogeneous broadening due to spatial alloy variations are discussed. Also, comparison with experiments is made.

More Details

Plasma Heating in Highly Excited GaN/AlGaN Multiple Quantum Wells

Applied Physics Letters

Chow, Weng W.

Plasma Heating in Highly Excited GaN/AIGaN Multiple Quantum @@lvEu Wells w f + 1998 %p, K. C. Zeng, R. Mair, J. Y. Liz and H. X. Jiang a) ` fabrication and understanding of MQW lasers [2-5]. For the design of these lasers, one on RT optical studies. Our results revealed that in the GaN/AIGaN MQWS, plasma heating strongly effects the carrier distribution between the confined and unconfined band-to-band and fke excitonic transitions [7]. In the MQW sample under low the unconfined states as determined from the band structure. sample under high Lxc, we varied the excitation intensity by one order of magnitude from 0.110 to IO. The carrier density is estimated to be about N=1012/cm2 (at UC= 0.1 Io) to 1013/cm2 (at 1=== l.). We plotted the PL spectra for four representative excitation fimction of injected carrier density N (open squares). The ratio starts at a value of about 18% for N=1012/cm2 (& = O. lb), and reaches a value over 64 `XO for N=1013/cm2 (& = regions is a loss to optical gain. The carrier density is ve~ high in our experiment and an electron-hole plasma (EHP) state is expected. Because the carrier transfer process plasma temperature. The laser pump energy is about 4.3 eV, which is far above the energy band gap of the sample studied here. This may result in a hot carrier population carrier densities and plasma temperatures. Using a phenomenological expression based The calculated ratio of carriers in the unconfked to the confined states (Ima~ kf) as a finction of carrier density at different temperatures are plotted in Fig. 3 (solid lines). The figure shows that the experiment results can only be explained by plasma heating of the injected carriers at high & ( TP > TJ. The transparency carrier densities for GaN/AIXGal.XN MQW structures with well thickness from 2 to 4 nm were calculated to be around 1x 1012/cm2 [10]. It is thus obvious from Fig. 3 that under high carrier injection density above the transparency density, the plasma temperature, TP, is no longer a constant. It rapidly increases with injected carrier density. Our results indicate that above the transparency carrier density, the carrier temperature may be a few due to the carrier plasma heating effect. Plasma heating makes it more difficult to obtain high quantum efficiency in the on improving the quantum efficiency of fiture GaN/AlxGalJ MQW laser structures, form an EHP and (b) plasma heating of the injected carriers strongly affects the carrier above the transparency density, the carrier plasma temperature may be a few hundred carrier density. The importance of plasma heating has both theoretical and experimental implications. It complicates the modeling of III-N lasers because plasma temperature The ratio of the PL intensities of the 25 ~ GaN/AIO.w&.mN MQW sample from fimction of injected carrier density. The open squares are experimental data and

More Details

Numerical modeling of vertical cavity semiconductor lasers

Chow, Weng W.

A vertical cavity surface emitting laser (VCSEL) is a diode laser whose optical cavity is formed by growing or depositing DBR mirror stacks that sandwich an active gain region. The resulting short cavity supports lasing into a single longitudinal mode normal to the wafer, making these devices ideal for a multitude of applications, ranging from high-speed communication to high-power sources (from 2D arrays). This report describes the development of a numerical VCSEL model, whose goal is to both further their understanding of these complex devices and provide a tool for accurate design and data analysis.

More Details

Reduced polarization decay due to carrier in-scattering in a semiconductor active medium

Chow, Weng W.

The in-scattering processes, which reduce the decay of the active medium polarization, should be included in a consistent treatment of semiconductor laser gain. The in-scattering processes affect the laser gain by decreasing the influence of the high k-states, which contribute absorption to the spectrum. A theory, based on the semiconductor-Bloch equations with the effects of carrier-carrier scattering treated at the level of the quantum kinetic equations in the Markov limit, predicts gain spectra that do not exhibit absorption below the renormalized band gap, in agreement with experiment. When compared to gain calculations where the in-scattering contribution is neglected, the theory predicts markedly different properties for intrinsic laser parameters, such as peak gain, gain bandwidth, differential gain and carrier density at transparency, especially at low carrier densities.

More Details

Microscopic theory of gain in a group-III nitride strained quantum well laser

Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS

Chow, Weng W.

The study of gain properties in group-III nitride quantum wells is complicated by several factors. In view of this, an approach is presented that involves a first-principles bandstructure calculation, the results of which are incorporated into a microscopic laser theory. The band structure calculation applies a density-functional method. This method provides a single analytical model for computing the group-II nitride material properties, thus ensuring consistency in the values for the different bandstructure parameters, and circumventing the discrepancies present in the literature due to different experimental conditions, or different computational methods. With a complete set of the relevant material parameters, it is possible to study the effects of strain and quantum confinement.

More Details

An optically-triggered semiconductor switch for high power laser beams

Chow, Weng W.

The work involves research leading to an optically triggered switch for a high power laser pulse. The switch uses a semiconductor heterostructure whose optical properties are modified by a low power laser trigger such as a laser diode. Potential applications include optical control of pulsed power systems, control of medical lasers and implementation of security features in optical warhead architectures.

More Details

Many-body effects in semiconductor lasers

Proceedings of SPIE - The International Society for Optical Engineering

Chow, Weng W.

A microscopic theory, that is based on the coupled Maxwell-semiconductor-Bloch equations, is used to investigate the effects of many-body Coulomb interactions in semiconductor laser devices. This paper describes two examples where the many-body effects play important roles. Experimental data supporting the theoretical results are presented.

More Details
Results 176–200 of 202
Results 176–200 of 202