Publications

77 Results

Search results

Jump to search filters

On plasticity-enhanced interfacial toughness in bonded joints

International Journal of Solids and Structures

Foulk, James W.; Grutzik, S.J.; Clarke, B.D.; Delrio, F.W.

The performance and reliability of many structures and components depend on the integrity of interfaces between dissimilar materials. Interfacial toughness Γ is the key material parameter that characterizes resistance to interfacial crack growth, and Γ is known to depend on many factors including temperature. For example, previous work showed that the toughness of an epoxy/aluminum interface decreased 40 % as the test temperature was increased from −60 °C to room temperature (RT). Interfacial integrity at elevated temperatures is of considerable practical importance. Recent measurements show that instead of continuing to decrease with increasing temperature, Γ increases when test temperature is above RT. Cohesive zone finite element calculations of an adhesively bonded, asymmetric double cantilever beam specimen of the type used to measure Γ suggest that this increase in toughness may be a result of R-curve behavior generated by plasticity-enhanced toughening during stable subcritical crack growth with interfacial toughness defined as the critical steady-state limit value. In these calculations, which used an elastic-perfectly plastic epoxy model with a temperature-dependent yield strength, the plasticity-enhanced increase in Γ above its intrinsic value Γo depended on the ratio of interfacial strength σ* to the yield strength σyb of the bond material. There is a nonlinear relationship between Γ/Γo and σ*/σyb with the value Γ/Γo increasing rapidly above a threshold value of σ*/σyb. The predicted increase in toughness can be significant. For example, there is nearly a factor of two predicted increase in Γ/Γo during micrometer-scale crack-growth when σ*/σyb = 2 (a reasonable choice for σ*/σyb). Furthermore, contrary to other reported results, plasticity-enhanced toughening can occur prior to crack advance as the cohesive zone forms and the peak stress at the tip of the original crack tip translates to the tip of the fully formed cohesive zone. These results suggest that plasticity-enhanced toughening should be considered when modeling interfaces at elevated temperatures.

More Details

Interpreting test temperature and loading rate effects on the fracture toughness of polymer-metal interfaces via time–temperature superposition

International Journal of Fracture

Delrio, F.W.; Huber, Todd; Jaramillo, Rex K.; Reedy, E.D.; Grutzik, S.J.

In this letter, we present interfacial fracture toughness data for a polymer-metal interface where tests were conducted at various test temperatures T and loading rates δ˙. An adhesively bonded asymmetric double cantilever beam (ADCB) specimen was utilized to measure toughness. ADCB specimens were created by bonding a thinner, upper adherend to a thicker, lower adherend (both 6061 T6 aluminum) using a thin layer of epoxy adhesive, such that the crack propagated along the interface between the thinner adherend and the epoxy layer. The specimens were tested at T from 25 to 65 °C and δ˙ from 0.002 to 0.2 mm/s. The measured interfacial toughness Γ increased as both T and δ˙ increased. For an ADCB specimen loaded at a constant δ˙, the energy release rate G increases as the crack length a increases. For this reason, we defined rate effects in terms of the rate of change in the energy release rate G˙. Although not rigorously correct, a formal application of time–temperature superposition (TTS) analysis to the Γ data provided useful insights on the observed dependencies. In the TTS-shifted data, Γ decreased and then increased for monotonically increasing G˙. Thus, the TTS analysis suggests that there is a minimum value of Γ. This minimum value could be used to define a lower bound in Γ when designing critical engineering applications that are subjected to T and δ˙ excursions.

More Details

Statistical mechanical model for crack growth

Physical Review E

Buche, Michael R.; Grutzik, S.J.

Analytic relations that describe crack growth are vital for modeling experiments and building a theoretical understanding of fracture. Upon constructing an idealized model system for the crack and applying the principles of statistical thermodynamics, it is possible to formulate the rate of thermally activated crack growth as a function of load, but the result is analytically intractable. Here, an asymptotically correct theory is used to obtain analytic approximations of the crack growth rate from the fundamental theoretical formulation. These crack growth rate relations are compared to those that exist in the literature and are validated with respect to Monte Carlo calculations and experiments. The success of this approach is encouraging for future modeling endeavors that might consider more complicated fracture mechanisms, such as inhomogeneity or a reactive environment.

More Details

Theory and Implementation of the Spectacular Nonlinear Viscoelastic Constitutive Model

Cundiff, K.N.; Buche, Michael R.; Talamini, Brandon; Grutzik, S.J.; Kropka, Jamie M.; Long, Kevin N.

This report is a comprehensive guide to the nonlinear viscoelastic Spectacular model, which is an isotropic, thermo-rheologically simple constitutive model for glass-forming materials, such as amorphous polymers. Spectacular is intermediate in complexity to the previous PEC and SPEC models (Potential Energy Clock and Simplified Potential Energy Clock models, respectively). The model form consists of two parts: a Helmholtz free energy functional and a nonlinear material clock that controls the rate of viscoelastic relaxation. The Helmholtz free energy is derived from a series expansion about a reference state. Expressions for the stress and entropy functionals are derived from the Helmholtz free energy following the Rational Mechanics approach. The material clock depends on a simplified expression for the potential energy, which itself is a functional of the temperature and strain histories. This report describes the thermo-mechanical theory of Spectacular, the numerical methods for time-integrating the model, model verification for its implementation in LAMÉ, a user guide for its implementation in LAMÉ, and ideas for future work. A number of appendices provide supplementary mathematical details and a description of the procedure used to derive the simplified potential energy from the full expression for the potential energy. The goal of this report is create a convenient point-of-entry for engineers who wish to learn more about Spectacular, but also to serve as a reference manual for advanced users of the model.

More Details

Chemical controls on the propagation and healing of subcritical fractures

Ilgen, Anastasia G.; Buche, Michael R.; Choens II, Robert C.; Dahmen, Karin A.; Delrio, F.W.; Gruenwald, Michael; Grutzik, S.J.; Harvey, Jacob A.; Mook, William M.; Newell, Pania; Wilson, Jennifer E.; Rimsza, Jessica; Sickle, Jordan; Wang, Qiaoyi; Warner, Derek H.

Human activities involving subsurface reservoirs—resource extraction, carbon and nuclear waste storage—alter thermal, mechanical, and chemical steady-state conditions in these systems. Because these systems exist at lithostatic pressures, even minor chemical changes can cause chemically assisted deformation. Therefore, understanding how chemical effects control geomechanical properties is critical to optimizing engineering activities. The grand challenge in predicting the effect of chemical processes on mechanical properties lays in the fact that these phenomena take place at molecular scales, while they manifest all the way to reservoir scales. To address this fundamental challenge, we investigated chemical effects on deformation in model and real systems spanning molecular- to centimeter scales. We used theory, experiment, molecular dynamics simulation, and statistical analysis to (1) identify the effect of simple reactions, such as hydrolysis, on molecular structures in interfacial regions of stressed geomaterials; (2) quantify chemical effects on the bulk mechanical properties, fracture and displacement for granular rocks and single crystals; (3) develop initial understanding of universal scaling for individual displacement events in layered geomaterials; and (4) develop analytic approximations for the single-chain mechanical response utilizing asymptotically correct statistical thermodynamic theory. Taken together, these findings advance the challenging field of chemo-mechanics.

More Details

Identifying crack tip position and stress intensity factors from displacement data

International Journal of Fracture

Gupta, Swati; West, Grant; Wilson, Mark A.; Grutzik, S.J.; Warner, Derek H.

Fracture prognosis and characterization efforts require knowledge of crack tip position and the Stress Intensity Factors (SIFs) acting in the vicinity of the crack. Here, we present an efficient numerical approach to infer both of these characteristics under a consistent theoretical framework from noisy, unstructured displacement data. The novel approach utilizes the separability of the asymptotic linear elastic fracture mechanics fields to expedite the search for crack tip position and is particularly useful for noisy displacement data. The manuscript begins with an assessment of the importance of accurately locating crack tip position when quantifying the SIFs from displacement data. Next, the proposed separability approach for quickly inferring crack tip position is introduced. Comparing to the widely used displacement correlation approach, the performance of the separability approach is assessed. Cases involving both noisy data and systematic deviation from the asymptotic linear elastic fracture mechanics model are considered, e.g. inelastic material behavior and finite geometries. An open source python implementation of the proposed approach is available for use by those doing field and laboratory work involving digital image correlation and simulations, e.g. finite element, discrete element, molecular dynamics and peridynamics, where the crack tip position is not explicitly defined.

More Details

An asymptotic approach for the statistical thermodynamics of certain model systems

Buche, Michael R.; Grutzik, S.J.; Silberstein, Meredith N.

In classical statistical thermodynamics, calculating the configuration integral is both vital and elusive. Analytic relations for configuration integrals are desirable for modeling purposes, but it is typically impossible to obtain them. Certain systems become analytically tractable after replacing steep potential energies with harmonic potentials or athermal rigid constraints, but these approximations are often inadequate, especially when modeling the stretching of molecules. It is therefore necessary to develop a systematic approach to improve upon the approximations provided by these reference systems. Here, a general asymptotic approach is introduced, where the configuration integral for the full system is obtained in terms of that of the reference system and several corrections. This asymptotic approach is first demonstrated using the simple example of a classical three-dimensional oscillator. Next, the approach is applied to modeling the stretching of single polymer chains and to modeling thermally assisted crack growth, where results are verified with respect to numerical calculations. Overall, this asymptotic approach is a valid and effective tool for statistical thermodynamics in general.

More Details

In-situ, nanoscale fracture toughness measurements for improved mechanical interfaces

Delrio, F.W.; Grutzik, S.J.; Mook, William M.; Dickens, Sara M.; Kotula, Paul G.; Hintsala, Eric D.; Stauffer, Douglas D.; Boyce, Brad L.

In this project, we demonstrated stable nanoscale fracture in single-crystal silicon using an in-situ wedge-loaded double cantilever beam (DCB) specimen. The fracture toughness KIC was calculated directly from instrumented measurement of force and displacement via finite element analysis with frictional corrections. Measurements on multiple test specimens were used to show KIC = 0.72 ± 0.07 MPa m1/2 on {111} planes and observe the crack-growth resistance curve in <500 nm increments. The exquisite stability of crack growth, instrumented measurement of material response, and direct visual access to observe nanoscale fracture processes in an ideally brittle material differentiate this approach from prior DCB methods.

More Details

Stress Intensity Thresholds for Development of Reliable Brittle Materials

Rimsza, Jessica; Strong, Kevin T.; Buche, Michael R.; Jones, Reese E.; Nakakura, Craig Y.; Weyrauch, Noah; Brow, Richard; Duree, Jessica M.; Stephens, Kelly S.; Grutzik, S.J.

Brittle material failure in high consequence systems can appear random and unpredictable at subcritical stresses. Gaps in our understanding of how structural flaws and environmental factors (humidity, temperature) impact fracture propagation need to be addressed to circumvent this issue. A combined experimental and computational approach composed of molecular dynamics (MD) simulations, numerical modeling, and atomic force microscopy (AFM) has been undertaken to identify mechanisms of slow crack growth in silicate glasses. AFM characterization of crack growth as slow as 10-13 m/s was observed, with some stepwise crack growth. MD simulations have identified the critical role of inelastic relaxation in crack propagation, including evolution of the structure during relaxation. A numerical model for the existence of a stress intensity threshold, a stress intensity below which a fracture will not propagate, was developed. This transferrable model for predicting slow crack growth is being incorporated into mission-based programs.

More Details

Freely jointed chain models with extensible links

Physical Review E

Buche, Michael R.; Silberstein, Meredith N.; Grutzik, S.J.

More Details

Residually Stressed Bimaterial Beam Specimen for Measuring Environmentally Assisted Crack Growth

Experimental Mechanics

Grutzik, S.J.; Aduloju, S.; Truster, T.; Foulk, James W.

Background:: Subcritical crack growth can occur in a brittle material when the stress intensity factor is smaller than the fracture toughness if an oxidizing agent (such as water) is present at the crack tip. Objective:: We present a novel bi-material beam specimen which can measure environmentally assisted crack growth rates. The specimen is “self-loaded” by residual stress and requires no external loading. Methods:: Two materials with different coefficient of thermal expansion are diffusion bonded at high temperature. After cooling to room temperature a subcritical crack is driven by thermal residual stresses. A finite element model is used to design the specimen geometry in terms of material properties in order to achieve the desired crack tip driving force. Results:: The specimen is designed so that the crack driving force decreases as the crack extends, thus enabling the measurement of the crack velocity versus driving force relationship with a single test. The method is demonstrated by measuring slow crack growth data in soda lime silicate glass and validated by comparison to previously published data. Conclusions:: The self-loaded nature of the specimen makes it ideal for measuring the very low crack velocities needed to predict brittle failure at long lifetimes.

More Details

Dynamic Tensile Response of a Fe–49Co–2V Alloy at Various Strain Rates and Temperatures

Journal of Dynamic Behavior of Materials

Song, Bo; Sanborn, Brett; Susan, Donald F.; Johnson, Kyle L.; Dabling, J.; Carroll, J.D.; Brink, Adam R.; Grutzik, S.J.; Kustas, Andrew B.

Soft ferromagnetic alloys are often utilized in electromagnetic applications due to their desirable magnetic properties. In support of these applications, the ferromagnetic alloys are also required to bear mechanical load under various loading and environmental conditions. In this study, a Fe–49Co–2V alloy was dynamically characterized in tension with a Kolsky tension bar and a Drop–Hopkinson bar at various strain rates and temperatures. Dynamic tensile stress–strain curves of the Fe–49Co–2V alloy were obtained at strain rates ranging from 40 to 230 s−1 and temperatures from − 100 to 100 °C. All dynamic tensile stress–strain curves exhibited an initial linear elastic response to an upper yield followed by Lüders band response and then a nearly linear work-hardening behavior. The yield strength of this material was found to be sensitive to both strain rate and temperature, whereas the hardening rate was independent of strain rate or temperature. The Fe–49Co–2V alloy exhibited a feature of brittle fracture in tension under dynamic loading with no necking being observed.

More Details

Dynamic Tensile Behavior of Soft Ferromagnetic Alloy Fe-Co-2V

Conference Proceedings of the Society for Experimental Mechanics Series

Sanborn, Brett; Song, Bo; Susan, Donald F.; Johnson, Kyle L.; Dabling, J.; Carroll, J.D.; Brink, Adam R.; Grutzik, S.J.; Kustas, Andrew B.

Fe-Co-2V is a soft ferromagnetic alloy used in electromagnetic applications due to excellent magnetic properties. However, the discontinuous yielding (Luders bands), grain-size-dependent properties (Hall-Petch behavior), and the degree of order/disorder in the Fe-Co-2V alloy makes it difficult to predict the mechanical performance, particularly in abnormal environments such as elevated strain rates and high/low temperatures. Thus, experimental characterization of the high strain rate properties of the Fe-Co-2V alloy is desired, which are used for material model development in numerical simulations. In this study, the high rate tensile response of Fe-Co-2V is investigated with a pulse-shaped Kolsky tension bar over a wide range of strain rates and temperatures. Effects of temperature and strain rate on yield stress, ultimate stress, and ductility are discussed.

More Details

Correction of specimen strain measurement in Kolsky tension bar experiments on work-hardening materials

International Journal of Impact Engineering

Song, Bo; Sanborn, Brett; Susan, Donald F.; Johnson, Kyle L.; Dabling, J.; Carroll, J.D.; Brink, Adam R.; Grutzik, S.J.; Kustas, Andrew B.

Cylindrical dog-bone (or dumbbell) shaped samples have become a common design for dynamic tensile tests of ductile materials with a Kolsky tension bar. When a direct measurement of displacement between the bar ends is used to calculate the specimen strain, the actual strain in the specimen gage section is overestimated due to strain in the specimen shoulder and needs to be corrected. The currently available correction method works well for elastic-perfectly plastic materials but may not be applicable to materials that exhibit significant work-hardening behavior. In this study, we developed a new specimen strain correction method for materials possessing an elastic-plastic with linear work-hardening stress–strain response. A Kolsky tension bar test of a Fe-49Co-2V alloy (known by trade names Hiperco and Permendur) was used to demonstrate the new specimen strain correction method. This new correction method was also used to correct specimen strains in Kolsky tension bar experiments on two other materials: 4140 alloy, and 304L-VAR stainless steel, which had different work-hardening behavior.

More Details

Continuum stress intensity factors from atomistic fracture simulations

Computer Methods in Applied Mechanics and Engineering

Wilson, Mark A.; Grutzik, S.J.; Chandross, Michael E.

Stress intensity factors (SIFs) are used in continuum fracture mechanics to quantify the stress fields surrounding a crack in a homogeneous material in the linear elastic regime. Critical values of the SIFs define an intrinsic measure of the resistance of a material to propagate a crack. At atomic scales, however, fracture occurs as a series of atomic bonds breaking, differing from the continuum description. As a consequence, a formal analog of the continuum SIFs calculated from atomistic simulations can have spatially localized, microstructural contributions that originate from varying bond configurations. The ability to characterize fracture at the atomic scale in terms of the SIFs offers both an opportunity to probe the effects of chemistry, as well as how the addition of a microstructural component affects the accuracy. We present a novel numerical method to determine SIFs from molecular dynamics (MD) simulations. The accuracy of this approach is first examined for a simple model, and then applied to atomistic simulations of fracture in amorphous silica. MD simulations provide time and spatially dependent SIFs, with results that are shown to be in good agreement with experimental values for fracture toughness in silica glass.

More Details

Investigation of R-Curve Behavior in Glass Ceramic Materials

Grutzik, S.J.; Strong, Kevin T.; Dai, Steve X.

We demonstrate the ability to measure R-curves of brittle materials using a method adapted from Theo Fett et al. The method is validated with a NIST standard reference material and demonstrated using Si3N4 of two different microstructures; glass-ceramic, and PZT. As expected, each material's R-curve is seen to be slightly different with glass-ceramics showing the most pronounced R-curve effects. Plans for future applications and experimental efforts are discussed.

More Details

Full stress tensor measurement using fluorescence spectroscopy

Journal of Applied Physics

Grutzik, S.J.; Teague, Melissa C.

Photoluminescent spectral peak positions are known to shift as a function of mechanical stress state. This has been demonstrated at macroscales to determine mean stress and mesoscales to determine mean stress and a quantity related to shear stress. Here, we propose a method to utilize traction-free surface conditions and knowledge of material orientation to solve for two in-plane displacement fields given two measured spectral peak positions measured at a grid of points. It is then possible to calculate the full stress tensor at each measurement point. This is a significant advancement over the previous ability to measure one or two stress quantities. We validate the proposed method using a simple, two-grain geometry and show that it produces the same mean stress and shear stress measure as the existing direct method. Furthermore, we also demonstrate determination of the full stress field in a polycrystalline alumina specimen.

More Details

Characterization and modeling of microstructural stresses in alumina

Journal of the American Ceramic Society

Grutzik, S.J.; Meserole, Stephen; Rodgers, Theron M.

Brittle failure is often influenced by difficult to measure and variable microstructure-scale stresses. Recent advances in photoluminescence spectroscopy (PLS), including improved confocal laser measurement and rapid spectroscopic data collection have established the potential to map stresses with microscale spatial resolution (< 2 μm). Advanced PLS was successfully used to investigate both residual and externally applied stresses in polycrystalline alumina at the microstructure scale. The measured average stresses matched those estimated from beam theory to within one standard deviation, validating the technique. Modeling the residual stresses within the microstructure produced qualitative agreement in comparison with the experimentally measured results. Microstructure scale modeling is primed to take advantage of advanced PLS to enable its refinement and validation, eventually enabling microstructure modeling to become a predictive tool for brittle materials.

More Details

Crack Path Selection in Thermally Loaded Borosilicate/Steel Bibeam Specimen

Experimental Mechanics

Grutzik, S.J.; Foulk, James W.

Here, we have developed a novel specimen for studying crack paths in glass. Under certain conditions, the specimen reaches a state where the crack must select between multiple paths satisfying the K II = 0 condition. This path selection is a simple but challenging benchmark case for both analytical and numerical methods of predicting crack propagation. We document the development of the specimen, using an uncracked and instrumented test case to study the effect of adhesive choice and validate the accuracy of both a simple beam theory model and a finite element model. In addition, we present preliminary fracture test results and provide a comparison to the path predicted by two numerical methods (mesh restructuring and XFEM). The directional stability of the crack path and differences in kink angle predicted by various crack kinking criteria is analyzed with a finite element model.

More Details

Microstructural Modeling of Brittle Materials for Enhanced Performance and Reliability

Teague, Melissa C.; Rodgers, Theron M.; Grutzik, S.J.; Meserole, Stephen

Brittle failure is often influenced by difficult to measure and variable microstructure-scale stresses. Recent advances in photoluminescence spectroscopy (PLS), including improved confocal laser measurement and rapid spectroscopic data collection have established the potential to map stresses with microscale spatial resolution (%3C2 microns). Advanced PLS was successfully used to investigate both residual and externally applied stresses in polycrystalline alumina at the microstructure scale. The measured average stresses matched those estimated from beam theory to within one standard deviation, validating the technique. Modeling the residual stresses within the microstructure produced general agreement in comparison with the experimentally measured results. Microstructure scale modeling is primed to take advantage of advanced PLS to enable its refinement and validation, eventually enabling microstructure modeling to become a predictive tool for brittle materials.

More Details

Oxide driven strength evolution of silicon surfaces

Journal of Applied Physics

Boyce, Brad L.; Grutzik, S.J.; Milosevic, Erik; Zehnder, Alan T.

Previous experiments have shown a link between oxidation and strength changes in single crystal silicon nanostructures but provided no clues as to the mechanisms leading to this relationship. Using atomic force microscope-based fracture strength experiments, molecular dynamics modeling, and measurement of oxide development with angle resolved x-ray spectroscopy we study the evolution of strength of silicon (111) surfaces as they oxidize and with fully developed oxide layers. We find that strength drops with partial oxidation but recovers when a fully developed oxide is formed and that surfaces intentionally oxidized from the start maintain their high initial strengths. MD simulations show that strength decreases with the height of atomic layer steps on the surface. These results are corroborated by a completely separate line of testing using micro-scale, polysilicon devices, and the slack chain method in which strength recovers over a long period of exposure to the atmosphere. Combining our results with insights from prior experiments we conclude that previously described strength decrease is a result of oxidation induced roughening of an initially flat silicon (1 1 1) surface and that this effect is transient, a result consistent with the observation that surfaces flatten upon full oxidation.

More Details
77 Results
77 Results