Direct Numerical Simulations of the Conventional Prompt Strike Vehicle?s Ogive at Hypersonic Flight Conditions
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This project combines several new concepts to create a boundary layer transition prediction capability that is suitable for analyzing modern hypersonic flight vehicles. The first new concept is the use of ''optimization'' methods to detect the hydrodynamic instabilities that cause boundary layer transition; the use of this method removes the need for many limiting assumptions of other methods and enables quantification of the interactions between boundary layer instabilities and the flow field imperfections that generate them. The second new concept is the execution of transition analysis within a conventional hypersonics CFD code, using the same mesh and numerical schemes for the transition analysis and the laminar flow simulation. This feature enables rapid execution of transition analysis with less user oversight required and no interpolation steps needed.
AIAA Scitech 2020 Forum
[Abstract] To support reduced order modeling of heat transfer for reentry bodies we develop an approximate solution method is identified that provides good estimates for the local wall derivative (and thereby the skin friction and Nusselt numbers) for a wide range of self-similar laminar formulations. These formulations include: Blasius flow, axisymmetric and planar stagnation flows and the Faulkner-Skan flows. The approach utilized is simply an extension of the classical Weyl formulation for the Blasius equation. Using this solution form estimates that naturally represent combined flow behaviors are represented without post-solution interpolation. An important example, namely axisymmetric stagnation equally combined with laminar zero pressure gradient (flat plate) flow, shows a difference of 10% between the pre-solution combination developed here and s simple post-solution arithmetic average. Clearly, the nonlinearity inherent to these solutions prevails in terms of these simple solutions. Compressible extensions to the basic incompressible result are achieved by including a near wall Chapman-Rubesin term making these solutions suitable for adiabatic wall problems. Direct comparison of the wall gradient estimation procedure developed here demonstrates excellent agreement with empirically fit blunt body heat transfer models such as the asymptotically consistent model of Kemp et. al. which are deemed more appropriate than the classical stagnation point scaling approaches.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report documents the initial testing of the Sandia Parallel Aerodynamics and Reentry Code (SPARC) to directly simulate hypersonic, turbulent boundary layer flow over a sharp 7- degree half-angle cone. This type of computation involves a tremendously large range of scales both in time and space, requiring a large number of grid cells and the efficient utilization of a large pool of resources. The goal of the simulation is to mimic and verify a wind tunnel experiment that seeks to measure the turbulent surface pressure fluctuations. These data are necessary for building a model to predict random vibration loading in the reentry flight environment. A low-dissipation flux scheme in SPARC is used on a 2.7 billion cell mesh to capture the turbulent fluctuations in the boundary layer flow. The grid is divided into 115200 partitions and simulated using the Knight's Landings (KNL) partition of the Trinity system. The parallel performance of SPARC is explored on the Trinity system, as well as some of the other new architectures. Extracting data from the simulation shows good agreement with the experiment as well as a colleague's simulation. The data provide a guide for which a new model can be built for better prediction of the reentry random vibration loads.
Abstract not provided.
Abstract not provided.
Journal of Spacecraft and Rockets
In the present study, three boundary-layer stability codes are compared based on hypersonic high-enthalpy boundary-layer flows around a blunted 7 deg half-angle cone. The code-to-code comparison is conducted between the following codes: the Nonlocal Transition analysis code of the DLR, German Aerospace Center (DLR); the Stability and Transition Analysis for hypersonic Boundary Layers code of VirtusAero LLC; and the VKI Extensible Stability and Transition Analysis code of the von Kármán Institute for Fluid Dynamics. The comparison focuses on the role of real-gas effects on the second-mode instability, in particular the disturbance frequency, and deals with the question on how far not accounting for real-gas effects compromises the stability analysis. Here, the experimental test cases for the comparison are provided by the DLR High Enthalpy Shock Tunnel Göttingen and the Japan Aerospace Exploration Agency High Enthalpy Shock Tunnel. The focus of the comparison between the stability results and the measurements is, besides real-gas effects, the influence of uncertainties in the mean flow on the stability analysis.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This document compares results for isothermal wall cases and observes their stagnation lines.