Publications

Results 26–50 of 57

Search results

Jump to search filters

System of Systems Model Development for Evaluating EMP Resilient Grid Mitigation Strategies

Eddy, John P.; Jones, Katherine A.; Jeffers, Robert F.; Staid, Andrea S.

This Laboratory Directed Research and Development (LDRD) project focused on understanding the mathematical relationships that can be used in assessing the value of executing various EMP mitigation strategies on the grid. This is referred to as the EMP Resilient Grid Value Model. Because the range of mitigation strategies can contain widely differing characteristics (operational vs. technological), it is necessary to compute functions of many interrelated metrics at varying levels of fidelity that will be used to provide feedback as to the cost/benefit relationship of any proposed strategy. The value model is a hierarchical decomposition of a system of systems (SoS) model down to a grid circuit model. The model is intended to be suitable for use in subsequent decision support optimization for resilience to EMP events. The metric set goes beyond direct, technical impacts on the electrical grid to include ancillary impacts on dependent infrastructure and enterprise concerns (water, DoD, transportation, etc.).

More Details

A Grid Modernization Approach for Community Resilience: Application to New Orleans, LA

Jeffers, Robert F.; Hightower, Marion M.; Brodsky, Nancy S.; Baca, Michael J.; Wachtel, Amanda; Aamir, Munaf S.; Fogleman, William; Peplinski, William J.; Vugrin, Eric D.

This report describes the application of an approach for determining grid modernization investments that can best improve the resilience of communities. Under the direction of the US Department of Energy's Grid Modernization Laboratory Consortium, Sandia National Laboratories (Sandia) and Los Alamos National Laboratory (Los Alamos) collaborated with community stakeholders in New Orleans, Louisiana on grid modernization strategies for resilience. Past disruptions to the electric grid in New Orleans have contributed to an inability to provide citizens with adequate access to a wide range of infrastructure services. Using a performance-based resilience metric, Sandia and Los Alamos performed analysis on how to improve access to infrastructure services across New Orleans after a major disruption using a system of resilience nodes. Resilience nodes rely on a combination of urban planning with grid investment planning for resilience in order to design clustered infrastructure assets with highly resilient electrical supply. Results of the analysis led to suggestion of 22 draft resilience node locations that can provide a wide range of infrastructure services equitably to New Orleans citizens. This report serves as a proof-of-concept for the Urban Resilience Planning Process, and describes several gaps that should be overcome in order to integrate resilience planning between electric utilities and local governments.

More Details

Improving Grid Resilience through Informed Decision-making (IGRID)

Burnham, Laurie B.; Stamber, Kevin L.; Jeffers, Robert F.; Adams, Susan S.; Verzi, Stephen J.; Sahakian, Meghan A.; Haass, Michael J.; Cauthen, Katherine R.

The transformation of the distribution grid from a centralized to decentralized architecture, with bi-directional power and data flows, is made possible by a surge in network intelligence and grid automation. While changes are largely beneficial, the interface between grid operator and automated technologies is not well understood, nor are the benefits and risks of automation. Quantifying and understanding the latter is an important facet of grid resilience that needs to be fully investigated. The work described in this document represents the first empirical study aimed at identifying and mitigating the vulnerabilities posed by automation for a grid that for the foreseeable future will remain a human-in-the-loop critical infrastructure. Our scenario-based methodology enabled us to conduct a series of experimental studies to identify causal relationships between grid-operator performance and automated technologies and to collect measurements of human performance as a function of automation. Our findings, though preliminary, suggest there are predictive patterns in the interplay between human operators and automation, patterns that can inform the rollout of distribution automation and the hiring and training of operators, and contribute in multiple and significant ways to the field of grid resilience.

More Details

Development of an Urban Resilience Analysis Framework with Application to Norfolk, VA

Jeffers, Robert F.; Fogleman, William; Shaneyfelt, Calvin S.; Grazier, Emma R.; Walsh, Sarah W.; Rothman, Sophie; Aamir, Munaf S.; Gibson, Jessica A.; Vargas, Vanessa N.; Vugrin, Eric D.; Passell, Howard D.; Conrad, Stephen

The same water that makes Norfolk, Virginia an ideal home for international ports and naval installations is also increasingly flooding large parts of the city and the surrounding Hampton Roads region. This report describes the development of a process to analyze the resilience of urban regions to the shocks and stresses that those cities care about, and applies this process to address flooding in Norfolk and Hampton Roads. The goal is to provide Norfolk city officials and regional asset owners with actionable information to plan the infrastructure improvements that will most greatly enhance the regions resilience to flooding. Results suggest that there are wide - ranging impacts of a major acute flooding event beyond the Hampton Roads region. A single four - day, 100 - year flood event in Hampton Roads would cause on the order of $355 - 606 million in detrimental impacts to global production, with greater impacts occurring in the future as net sea levels rise. This report highlights the infrastructure behaviors, interdependencies, and the economic analyses that determine these impacts.

More Details

Integrated Human Futures Modeling in Egypt

Passell, Howard D.; Aamir, Munaf S.; Bernard, Michael L.; Beyeler, Walter E.; Fellner, Karen M.; Hayden, Nancy K.; Jeffers, Robert F.; Keller, Elizabeth J.; Malczynski, Leonard A.; Mitchell, Michael D.; Silver, Emily; Tidwell, Vincent C.; Villa, Daniel V.; Vugrin, Eric D.; Engelke, Peter; Burrow, Mat; Keith, Bruce

The Integrated Human Futures Project provides a set of analytical and quantitative modeling and simulation tools that help explore the links among human social, economic, and ecological conditions, human resilience, conflict, and peace, and allows users to simulate tradeoffs and consequences associated with different future development and mitigation scenarios. In the current study, we integrate five distinct modeling platforms to simulate the potential risk of social unrest in Egypt resulting from the Grand Ethiopian Renaissance Dam (GERD) on the Blue Nile in Ethiopia. The five platforms simulate hydrology, agriculture, economy, human ecology, and human psychology/behavior, and show how impacts derived from development initiatives in one sector (e.g., hydrology) might ripple through to affect other sectors and how development and security concerns may be triggered across the region. This approach evaluates potential consequences, intended and unintended, associated with strategic policy actions that span the development-security nexus at the national, regional, and international levels. Model results are not intended to provide explicit predictions, but rather to provide system-level insight for policy makers into the dynamics among these interacting sectors, and to demonstrate an approach to evaluating short- and long-term policy trade-offs across different policy domains and stakeholders. The GERD project is critical to government-planned development efforts in Ethiopia but is expected to reduce downstream freshwater availability in the Nile Basin, fueling fears of negative social and economic impacts that could threaten stability and security in Egypt. We tested these hypotheses and came to the following preliminary conclusions. First, the GERD will have an important short-term impact on water availability, food production, and hydropower production in Egypt, depending on the short- term reservoir fill rate. Second, the GERD will have a very small impact on water availability in the Nile Basin over the longer term. Depending on the GERD fill rate, short-term (e.g., within its first 5 years of operation) annual losses in Egyptian food production may peak briefly at 25 percent. Long-term (e.g., 15 to 30 year) cumulative losses in Egypt's food production may be less than 3 percent regardless of the fill rate, with the GERD having essentially no impact on projected annual food production in Egypt about 25 years after opening. For the quick fill rates, the short-term losses may be sufficient to create an important decrease in overall household health among the general population, which, along with other economic stressors and different strategies employed by the government, could lead to social unrest. Third, and perhaps most importantly, our modeling suggests that the GERD's effect on Egypt's food and water resources is small when compared to the effect of projected Egyptian population and economic growth (and the concomitant increase in water consumption). The latter dominating factors are exacerbated in the modeling by natural climate variability and may be further exacerbated by climate change. Our modeling suggests that these growth dynamics combine to create long-term water scarcity in Egypt, regardless of the Ethiopian project. All else being equal, filling strategies that employ slow fill rates for the GERD (e.g., 8 to 13 years) may mitigate the risks in future scenarios for Egypt somewhat, but no policy or action regarding the GERD is likely to significantly alleviate the projected water scarcity in Egypt's Nile Basin. However, general beliefs among the Egyptian populace regarding the GERD as a major contributing factor for scarcities in Egypt could make Ethiopia a scapegoat for Egyptian grievances -- contributing to social unrest in Egypt and generating undesirable (and unnecessary) tension between these two countries. Such tension could threaten the constructive relationships between Egypt and Ethiopia that are vital to maintaining stability and security within and between their respective regional spheres of influence, Middle East and North Africa, and the Horn of Africa.

More Details

Behavior Influence Assessment of Impacts of the Grand Ethiopian Renaissance Dam on Unrest and Popular Support Within Egypt

Procedia Manufacturing

Jeffers, Robert F.; Bernard, Michael L.; Passell, Howard D.; Silver, Emily J.

The construction of the Grand Ethiopian Renaissance Dam (GERD) has generated tensions between Egypt and Ethiopia over control of the Nile River in Northern Africa. However, tensions within Egypt have also been pronounced, leading up to and following the Arab Spring uprising of 2011. This study used the Behavior Influence Assessment (BIA) framework to simulate a dynamic hypothesis regarding how tensions within Egypt may evolve given the impacts of the GERD. Primarily, we addressed the interplay between four parties over an upcoming ten-year period: the Egyptian Regime, the Military-Elite, the Militant population, and the non-Militant population. The core tenant of the hypothesis is that rising food prices was a strong driver to the unrest leading up to the Arab Spring events and that this same type of economic stress could be driven by the GERD—albeit with different political undertones. Namely, the GERD offers the Regime a target for inciting nationalism, and while this may buy the regime time to fix the underlying economic impacts, ultimately there exists a tipping point beyond which exponentially increasing unrest is unavoidable without implementing strong measures, such as state militarization.

More Details

Toward an Objective Measure of Automation for the Electric Grid

Procedia Manufacturing

Haass, Michael J.; Warrender, Christina E.; Burnham, Laurie B.; Jeffers, Robert F.; Adams, Susan S.; Cole, Kerstan S.; Forsythe, James C.

The impact of automation on human performance has been studied by human factors researchers for over 35 years. One unresolved facet of this research is measurement of the level of automation across and within engineered systems. Repeatable methods of observing, measuring and documenting the level of automation are critical to the creation and validation of generalized theories of automation's impact on the reliability and resilience of human-in-the-loop systems. Numerous qualitative scales for measuring automation have been proposed. However these methods require subjective assessments based on the researcher's knowledge and experience, or through expert knowledge elicitation involving highly experienced individuals from each work domain. More recently, quantitative scales have been proposed, but have yet to be widely adopted, likely due to the difficulty associated with obtaining a sufficient number of empirical measurements from each system component. Our research suggests the need for a quantitative method that enables rapid measurement of a system's level of automation, is applicable across domains, and can be used by human factors practitioners in field studies or by system engineers as part of their technical planning processes. In this paper we present our research methodology and early research results from studies of electricity grid distribution control rooms. Using a system analysis approach based on quantitative measures of level of automation, we provide an illustrative analysis of select grid modernization efforts. This measure of the level of automation can be displayed as either a static, historical view of the system's automation dynamics (the dynamic interplay between human and automation required to maintain system performance) or it can be incorporated into real-time visualization systems already present in control rooms.

More Details
Results 26–50 of 57
Results 26–50 of 57