Publications

Results 76–99 of 99

Search results

Jump to search filters

Turbocharging Quantum Tomography

Blume-Kohout, Robin J.; Laros, James H.; Nielsen, Erik N.; Maunz, Peter L.; Scholten, Travis L.; Rudinger, Kenneth M.

Quantum tomography is used to characterize quantum operations implemented in quantum information processing (QIP) hardware. Traditionally, state tomography has been used to characterize the quantum state prepared in an initialization procedure, while quantum process tomography is used to characterize dynamical operations on a QIP system. As such, tomography is critical to the development of QIP hardware (since it is necessary both for debugging and validating as-built devices, and its results are used to influence the next generation of devices). But tomography suffers from several critical drawbacks. In this report, we present new research that resolves several of these flaws. We describe a new form of tomography called gate set tomography (GST), which unifies state and process tomography, avoids prior methods critical reliance on precalibrated operations that are not generally available, and can achieve unprecedented accuracies. We report on theory and experimental development of adaptive tomography protocols that achieve far higher fidelity in state reconstruction than non-adaptive methods. Finally, we present a new theoretical and experimental analysis of process tomography on multispin systems, and demonstrate how to more effectively detect and characterize quantum noise using carefully tailored ensembles of input states.

More Details

Technology for On-Chip Qubit Control with Microfabricated Surface Ion Traps

Highstrete, Clark H.; Sterk, Jonathan D.; Heller, Edwin J.; Maunz, Peter L.; Nordquist, Christopher N.; Stevens, James E.; Tigges, Chris P.; Blain, Matthew G.

Trapped atomic ions are a leading physical system for quantum information processing. However, scalability and operational fidelity remain limiting technical issues often associated with optical qubit control. One promising approach is to develop on-chip microwave electronic control of ion qubits based on the atomic hyperfine interaction. This project developed expertise and capabilities at Sandia toward on-chip electronic qubit control in a scalable architecture. The project developed a foundation of laboratory capabilities, including trapping the 171Yb+ hyperfine ion qubit and developing an experimental microwave coherent control capability. Additionally, the project investigated the integration of microwave device elements with surface ion traps utilizing Sandia’s state-of-the-art MEMS microfabrication processing. This effort culminated in a device design for a multi-purpose ion trap experimental platform for investigating on-chip microwave qubit control, laying the groundwork for further funded R&D to develop on-chip microwave qubit control in an architecture that is suitable to engineering development.

More Details

Sandia Micro-fabricated Ion Traps for the MUSIQC architecture

Maunz, Peter L.; Heller, Edwin J.; Hollowell, Andrew E.; Kemme, S.A.; Loviza, Becky G.; Mizrahi, Jonathan A.; Ortega, Anathea C.; Scrymgeour, David S.; Sterk, Jonathan D.; Tigges, Chris P.; Dagel, Amber L.; Clark, Craig R.; Stick, Daniel L.; Blain, Matthew G.; Clark, Susan M.; Resnick, Paul J.; Arrington, Christian L.; Benito, Francisco M.; Boye, Robert B.; Ellis, A.R.; Haltli, Raymond A.

Abstract not provided.

Results 76–99 of 99
Results 76–99 of 99