Publications

Results 26–47 of 47

Search results

Jump to search filters

Molecular and Kinetic Models for High-Rate Thermal Degradation of Polyethylene

Journal of Physical Chemistry A

Lane, James M.; Moore, Nathan W.

Thermal degradation of polyethylene is studied under the extremely high rate temperature ramps expected in laser-driven and X-ray ablation experiments - from 1010 to 1014 K/s in isochoric, condensed phases. The molecular evolution and macroscopic state variables are extracted as a function of density from reactive molecular dynamics simulations using the ReaxFF potential. The enthalpy, dissociation onset temperature, bond evolution, and observed cross-linking are shown to be rate dependent. These results are used to parametrize a kinetic rate model for the decomposition and coalescence of hydrocarbons as a function of temperature, temperature ramp rate, and density. The results are contrasted to first-order random-scission macrokinetic models often assumed for pyrolysis of linear polyethylene under ambient conditions.

More Details

Investigating the effect of adding an on-axis jet to Ar gas puff Z pinches on Z

Physics of Plasmas

Harvey-Thompson, Adam J.; Jennings, Christopher A.; Jones, Brent M.; Ampleford, David A.; Lamppa, Derek C.; Coverdale, Christine A.; Cuneo, M.E.; Hansen, Stephanie B.; Jones, Michael J.; Moore, Nathan W.; Rochau, G.A.; Apruzese, John P.; Giuliani, John L.; Thornhill, John W.

Double-shell Ar gas puff implosions driven by 16.5±0.5 MA on the Z generator at Sandia National Laboratories are very effective emitters of Ar K-shell radiation (photon energy >3 keV), producing yields of 330 ± 9% kJ (B. Jones et al., Phys. Plasmas, 22, 020706, 2015). In addition, previous simulations and experiments have reported dramatic increases in K-shell yields when adding an on-axis jet to double shell gas puffs for some configurations.

More Details

Investigating the Effects of Adding a Center jet to Argon gas puff implosions at the Z facility

Harvey-Thompson, Adam J.; Jennings, Christopher A.; Jones, Brent M.; Ampleford, David A.; Hansen, Stephanie B.; Lamppa, Derek C.; Cuneo, M.E.; Reneker, Joseph R.; Johnson, Drew J.; Jones, Michael J.; Moore, Nathan W.; Flanagan, Timothy M.; Mckenney, John M.; Rochau, G.A.; Waisman, Eduardo M.; Coverdale, Christine A.; Apruzese, John P.; Thornhill, J.W.; Giuliani, J.L.

Abstract not provided.

The effect of gradients at stagnation on K-shell x-ray line emission in high-current Ar gas-puff implosions

Physics of Plasmas

Jones, Michael J.; Apruzese, J.P.; Harvey-Thompson, Adam J.; Ampleford, David A.; Jennings, Christopher A.; Hansen, Stephanie B.; Moore, Nathan W.; Lamppa, Derek C.; Johnson, Drew J.; Waisman, Eduardo M.; Coverdale, Christine A.; Cuneo, M.E.; Rochau, G.A.; Giuliani, J.L.; Thornhill, J.W.; Ouart, N.D.; Chong, Y.K.; Velikovich, A.L.; Dasgupta, A.; Krishnan, M.; Coleman, P.L.

Argon gas puffs have produced 330kJ ± 9% of x-ray radiation above 3keV photon energy in fast z-pinch implosions, with remarkably reproducible K-shell spectra and power pulses. This reproducibility in x-ray production is particularly significant in light of the variations in instability evolution observed between experiments. Soft x-ray power measurements and K-shell line ratios from a time-resolved spectrum at peak x-ray power suggest that plasma gradients in these high-mass pinches may limit the K-shell radiating mass, K-shell power, and K-shell yield from high-current gas puffs.

More Details

Two-dimensional RMHD modeling assessment of current flow plasma conditions and Doppler effects in recent Z argon experiments

Jones, Brent M.; J W, Thornhill; Giuliani, J.L.; Apruzese, John P.; Dasgupta, A.; Chong, Y.K.; Harvey-Thompson, Adam J.; Ampleford, David A.; Hansen, Stephanie B.; Coverdale, Christine A.; Jennings, Christopher A.; Rochau, G.A.; Cuneo, M.E.; Lamppa, Derek C.; Johnson, Drew J.; Jones, Michael J.; Moore, Nathan W.; Waisman, Eduardo M.; Krishnan, M.; Coleman, P.L.

Abstract not provided.

Studies of the viscoelastic properties of water confined between surfaces of specified chemical nature

Moore, Nathan W.; Feibelman, Peter J.; Grest, Gary S.

This report summarizes the work completed under the Laboratory Directed Research and Development (LDRD) project 10-0973 of the same title. Understanding the molecular origin of the no-slip boundary condition remains vitally important for understanding molecular transport in biological, environmental and energy-related processes, with broad technological implications. Moreover, the viscoelastic properties of fluids in nanoconfinement or near surfaces are not well-understood. We have critically reviewed progress in this area, evaluated key experimental and theoretical methods, and made unique and important discoveries addressing these and related scientific questions. Thematically, the discoveries include insight into the orientation of water molecules on metal surfaces, the premelting of ice, the nucleation of water and alcohol vapors between surface asperities and the lubricity of these molecules when confined inside nanopores, the influence of water nucleation on adhesion to salts and silicates, and the growth and superplasticity of NaCl nanowires.

More Details

Mechanics of soft interfaces studied with displacement-controlled scanning force microscopy

Progress in Surface Science

Goertz, Matt G.; Moore, Nathan W.

The development of scanning force microscopes that maintain precise control of the tip position using displacement control (DC-SFM) has allowed significant progress in understanding the relationships between the chemical and mechanical properties of soft interfaces. Here, developments in DC-SFM techniques and their applications are reviewed. Examples of material systems that have been investigated are discussed and compared to measurements with other techniques involving nanoprobe geometries to illustrate the achievements and promise in this area. Specifically discussed are applications to soft interfaces, including SAMs, lipid bilayers, confined fluids, polymer surfaces, ligand-receptor bonds, and soft metallic films. © 2010 Elsevier Ltd. All rights reserved.

More Details
Results 26–47 of 47
Results 26–47 of 47