Publications

Results 1–25 of 74

Search results

Jump to search filters

Creating a User-Centric Data Flow Visualization: A Case Study

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Butler, Karin B.; Leger, Michelle A.; Bueno, Denis B.; Cueller, Christopher R.; Haass, Michael J.; Loffredo, Timothy; Reedy, Geoffrey E.; Tuminaro, Julian T.

Vulnerability analysts protecting software lack adequate tools for understanding data flow in binaries. We present a case study in which we used human factors methods to develop a taxonomy for understanding data flow and the visual representations needed to support decision making for binary vulnerability analysis. Using an iterative process, we refined and evaluated the taxonomy by generating three different data flow visualizations for small binaries, trained an analyst to use these visualizations, and tested the utility of the visualizations for answering data flow questions. Throughout the process and with minimal training, analysts were able to use the visualizations to understand data flow related to security assessment. Our results indicate that the data flow taxonomy is promising as a mechanism for improving analyst understanding of data flow in binaries and for supporting efficient decision making during analysis.

More Details

A heuristic approach to value-driven evaluation of visualizations

IEEE Transactions on Visualization and Computer Graphics

Wall, Emily; Agnihotri, Meeshu; Matzen, Laura E.; Divis, Kristin; Haass, Michael J.; Endert, Alex; Stasko, John

Recently, an approach for determining the value of a visualization was proposed, one moving beyond simple measurements of task accuracy and speed. The value equation contains components for the time savings a visualization provides, the insights and insightful questions it spurs, the overall essence of the data it conveys, and the confidence about the data and its domain it inspires. This articulation of value is purely descriptive, however, providing no actionable method of assessing a visualization's value. In this work, we create a heuristic-based evaluation methodology to accompany the value equation for assessing interactive visualizations. We refer to the methodology colloquially as ICE-T, based on an anagram of the four value components. Our approach breaks the four components down into guidelines, each of which is made up of a small set of low-level heuristics. Evaluators who have knowledge of visualization design principles then assess the visualization with respect to the heuristics. We conducted an initial trial of the methodology on three interactive visualizations of the same data set, each evaluated by 15 visualization experts. We found that the methodology showed promise, obtaining consistent ratings across the three visualizations and mirroring judgments of the utility of the visualizations by instructors of the course in which they were developed.

More Details

Creating an Interprocedural Analyst-Oriented Data Flow Representation for Binary Analysts (CIAO)

Leger, Michelle A.; Butler, Karin B.; Bueno, Denis B.; Crepeau, Matthew; Cueller, Christopher R.; Godwin, Alex; Haass, Michael J.; Loffredo, Timothy; Mangal, Ravi; Matzen, Laura E.; Nguyen, Vivian; Orso, Alessandro; Reedy, Geoffrey E.; Stasko, John T.; Stites, Mallory C.; Tuminaro, Julian T.; Wilson, Andrew T.

National security missions require understanding third-party software binaries, a key element of which is reasoning about how data flows through a program. However, vulnerability analysts protecting software lack adequate tools for understanding data flow in binaries. To reduce the human time burden for these analysts, we used human factors methods in a rolling discovery process to derive user-centric visual representation requirements. We encountered three main challenges: analysis projects span weeks, analysis goals significantly affect approaches and required knowledge, and analyst tools, techniques, conventions, and prioritization are based on personal preference. To address these challenges, we initially focused our human factors methods on an attack surface characterization task. We generalized our results using a two-stage modified sorting task, creating requirements for a data flow visualization. We implemented these requirements partially in manual static visualizations, which we informally evaluated, and partially in automatically generated interactive visualizations, which have yet to be integrated into workflows for evaluation. Our observations and results indicate that 1) this data flow visualization has the potential to enable novel code navigation, information presentation, and information sharing, and 2) it is an excellent time to pursue research applying human factors methods to binary analysis workflows.

More Details

Data Visualization Saliency Model: A Tool for Evaluating Abstract Data Visualizations

IEEE Transactions on Visualization and Computer Graphics

Matzen, Laura E.; Haass, Michael J.; Divis, Kristin; Wang, Zhiyuan; Wilson, Andrew T.

Evaluating the effectiveness of data visualizations is a challenging undertaking and often relies on one-off studies that test a visualization in the context of one specific task. Researchers across the fields of data science, visualization, and human-computer interaction are calling for foundational tools and principles that could be applied to assessing the effectiveness of data visualizations in a more rapid and generalizable manner. One possibility for such a tool is a model of visual saliency for data visualizations. Visual saliency models are typically based on the properties of the human visual cortex and predict which areas of a scene have visual features (e.g. color, luminance, edges) that are likely to draw a viewer's attention. While these models can accurately predict where viewers will look in a natural scene, they typically do not perform well for abstract data visualizations. In this paper, we discuss the reasons for the poor performance of existing saliency models when applied to data visualizations. We introduce the Data Visualization Saliency (DVS) model, a saliency model tailored to address some of these weaknesses, and we test the performance of the DVS model and existing saliency models by comparing the saliency maps produced by the models to eye tracking data obtained from human viewers. Finally, we describe how modified saliency models could be used as general tools for assessing the effectiveness of visualizations, including the strengths and weaknesses of this approach.

More Details

Modeling human comprehension of data visualizations

Matzen, Laura E.; Haass, Michael J.; Divis, Kristin; Wilson, Andrew T.

This project was inspired by two needs. The first is a need for tools to help scientists and engineers to design effective data visualizations for communicating information, whether to the user of a system, an analyst who must make decisions based on complex data, or in the context of a technical report or publication. Most scientists and engineers are not trained in visualization design, and they could benefit from simple metrics to assess how well their visualization's design conveys the intended message. In other words, will the most important information draw the viewer's attention? The second is the need for cognition-based metrics for evaluating new types of visualizations created by researchers in the information visualization and visual analytics communities. Evaluating visualizations is difficult even for experts. However, all visualization methods and techniques are intended to exploit the properties of the human visual system to convey information efficiently to a viewer. Thus, developing evaluation methods that are rooted in the scientific knowledge of the human visual system could be a useful approach. In this project, we conducted fundamental research on how humans make sense of abstract data visualizations, and how this process is influenced by their goals and prior experience. We then used that research to develop a new model, the Data Visualization Saliency Model, that can make accurate predictions about which features in an abstract visualization will draw a viewer's attention. The model is an evaluation tool that can address both of the needs described above, supporting both visualization research and Sandia mission needs.

More Details

Data Visualization Saliency Model: A Tool for Evaluating Abstract Data Visualizations

IEEE Transactions on Visualization and Computer Graphics

Matzen, Laura E.; Haass, Michael J.; Divis, Kristin; Wang, Zhiyuan; Wilson, Andrew T.

Evaluating the effectiveness of data visualizations is a challenging undertaking and often relies on one-off studies that test a visualization in the context of one specific task. Researchers across the fields of data science, visualization, and human-computer interaction are calling for foundational tools and principles that could be applied to assessing the effectiveness of data visualizations in a more rapid and generalizable manner. One possibility for such a tool is a model of visual saliency for data visualizations. Visual saliency models are typically based on the properties of the human visual cortex and predict which areas of a scene have visual features (e.g. color, luminance, edges) that are likely to draw a viewer's attention. While these models can accurately predict where viewers will look in a natural scene, they typically do not perform well for abstract data visualizations. In this paper, we discuss the reasons for the poor performance of existing saliency models when applied to data visualizations. We introduce the Data Visualization Saliency (DVS) model, a saliency model tailored to address some of these weaknesses, and we test the performance of the DVS model and existing saliency models by comparing the saliency maps produced by the models to eye tracking data obtained from human viewers. In conclusion, we describe how modified saliency models could be used as general tools for assessing the effectiveness of visualizations, including the strengths and weaknesses of this approach.

More Details

Patterns of attention: How data visualizations are read

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Matzen, Laura E.; Haass, Michael J.; Divis, Kristin; Stites, Mallory C.

Data visualizations are used to communicate information to people in a wide variety of contexts, but few tools are available to help visualization designers evaluate the effectiveness of their designs. Visual saliency maps that predict which regions of an image are likely to draw the viewer’s attention could be a useful evaluation tool, but existing models of visual saliency often make poor predictions for abstract data visualizations. These models do not take into account the importance of features like text in visualizations, which may lead to inaccurate saliency maps. In this paper we use data from two eye tracking experiments to investigate attention to text in data visualizations. The data sets were collected under two different task conditions: a memory task and a free viewing task. Across both tasks, the text elements in the visualizations consistently drew attention, especially during early stages of viewing. These findings highlight the need to incorporate additional features into saliency models that will be applied to visualizations.

More Details

Practice makes imperfect: Working memory training can harm recognition memory performance

Memory and Cognition

Matzen, Laura E.; Trumbo, Michael C.; Haass, Michael J.; Silva, Austin R.; Adams, Susan S.; Bunting, Michael F.; O'Rourke, Polly

There is a great deal of debate concerning the benefits of working memory (WM) training and whether that training can transfer to other tasks. Although a consistent finding is that WM training programs elicit a short-term near-transfer effect (i.e., improvement in WM skills), results are inconsistent when considering persistence of such improvement and far transfer effects. In this study, we compared three groups of participants: a group that received WM training, a group that received training on how to use a mental imagery memory strategy, and a control group that received no training. Although the WM training group improved on the trained task, their posttraining performance on nontrained WM tasks did not differ from that of the other two groups. In addition, although the imagery training group’s performance on a recognition memory task increased after training, the WM training group’s performance on the task decreased after training. Participants’ descriptions of the strategies they used to remember the studied items indicated that WM training may lead people to adopt memory strategies that are less effective for other types of memory tasks. These results indicate that WM training may have unintended consequences for other types of memory performance.

More Details

Information theoretic measures for visual analytics: The silver ticket?

ACM International Conference Proceeding Series

McNamara, Laura A.; Bauer, Travis L.; Haass, Michael J.; Matzen, Laura E.

In this paper, we argue that information theoretic measures may provide a robust, broadly applicable, repeatable metric to assess how a system enables people to reduce high-dimensional data into topically relevant subsets of information. Explosive growth in electronic data necessitates the development of systems that balance automation with human cognitive engagement to facilitate pattern discovery, analysis and characterization, variously described as "cognitive augmentation" or "insight generation." However, operationalizing the concept of insight in any measurable way remains a difficult challenge for visualization researchers. The "golden ticket" of insight evaluation would be a precise, generalizable, repeatable, and ecologically valid metric that indicates the relative utility of a system in heightening cognitive performance or facilitating insights. Unfortunately, the golden ticket does not yet exist. In its place, we are exploring information theoretic measures derived from Shannon's ideas about information and entropy as a starting point for precise, repeatable, and generalizable approaches for evaluating analytic tools. We are specifically concerned with needle-in-haystack workflows that require interactive search, classification, and reduction of very large heterogeneous datasets into manageable, task-relevant subsets of information. We assert that systems aimed at facilitating pattern discovery, characterization and analysis - i.e., "insight" - must afford an efficient means of sorting the needles from the chaff; and simple compressibility measures provide a way of tracking changes in information content as people shape meaning from data.

More Details

Improving Grid Resilience through Informed Decision-making (IGRID)

Burnham, Laurie B.; Stamber, Kevin L.; Jeffers, Robert F.; Adams, Susan S.; Verzi, Stephen J.; Sahakian, Meghan A.; Haass, Michael J.; Cauthen, Katherine R.

The transformation of the distribution grid from a centralized to decentralized architecture, with bi-directional power and data flows, is made possible by a surge in network intelligence and grid automation. While changes are largely beneficial, the interface between grid operator and automated technologies is not well understood, nor are the benefits and risks of automation. Quantifying and understanding the latter is an important facet of grid resilience that needs to be fully investigated. The work described in this document represents the first empirical study aimed at identifying and mitigating the vulnerabilities posed by automation for a grid that for the foreseeable future will remain a human-in-the-loop critical infrastructure. Our scenario-based methodology enabled us to conduct a series of experimental studies to identify causal relationships between grid-operator performance and automated technologies and to collect measurements of human performance as a function of automation. Our findings, though preliminary, suggest there are predictive patterns in the interplay between human operators and automation, patterns that can inform the rollout of distribution automation and the hiring and training of operators, and contribute in multiple and significant ways to the field of grid resilience.

More Details

PANTHER Grand Challenge LDRD: Human Analytics Research Summary

McNamara, Laura A.; Czuchlewski, Kristina R.; Cole, Kerstan S.; Ganter, John H.; Haass, Michael J.; Matzen, Laura E.; Adams, Susan S.; Stracuzzi, David J.

This summary of PANTHER Human Analytics work describes three of the team's major work activities: research with teams to elicit and document work practices; experimental studies of visual search performance and visual attention; and the application of spatio-temporal algorithms to the analysis of eye tracking data. Our intent is to provide basic introduction to the work area and a selected set of representative HA team publications as a starting point for readers interested our team's work.

More Details
Results 1–25 of 74
Results 1–25 of 74