Publications

Results 26–50 of 51

Search results

Jump to search filters

GPLadd: Quantifying trust in government and commercial systems a game-theoretic approach

ACM Transactions on Privacy and Security

Outkin, Alexander V.; Eames, Brandon K.; Sahakian, Meghan A.; Walsh, Sarah; Vugrin, Eric D.; Heersink, Byron; Hobbs, Jacob A.; Wyss, Gregory D.

Trust in a microelectronics-based system can be characterized as the level of confidence that a system is free of subversive alterations made during system development, or that the development process of a system has not been manipulated by a malicious adversary. Trust in systems has become an increasing concern over the past decade. This article presents a novel game-theoretic framework, called GPLADD (Graph-based Probabilistic Learning Attacker and Dynamic Defender), for analyzing and quantifying system trustworthiness at the end of the development process, through the analysis of risk of development-time system manipulation. GPLADD represents attacks and attacker-defender contests over time. It treats time as an explicit constraint and allows incorporating the informational asymmetries between the attacker and defender into analysis. GPLADD includes an explicit representation of attack steps via multi-step attack graphs, attacker and defender strategies, and player actions at different times. GPLADD allows quantifying the attack success probability over time and the attacker and defender costs based on their capabilities and strategies. This ability to quantify different attacks provides an input for evaluation of trust in the development process. We demonstrate GPLADD on an example attack and its variants. We develop a method for representing success probability for arbitrary attacks and derive an explicit analytic characterization of success probability for a specific attack. We present a numeric Monte Carlo study of a small set of attacks, quantify attack success probabilities, attacker and defender costs, and illustrate the options the defender has for limiting the attack success and improving trust in the development process.

More Details

Task-specific compressive optical system design through genetic algorithms

2019 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization, NEMO 2019

Sahakian, Meghan A.; Quach, Tu-Thach Q.; Birch, Gabriel C.; LaCasse, Charles F.; Dagel, Amber L.

Alternative architectures for imaging devices which fuse the optical design with an algorithmic component enable inexpensive sensing systems optimized for specific classification tasks. Leveraging past work in task-specific compressive devices, this work seeks to improve upon previous designs of optical and algorithmic elements. We achieve this through use of genetic algorithms to enforce conditions upon the optimization phase of a computational imaging system. Through enforcement of binary sampling or discrete-valued outputs of a system measurement matrix, it is possible to simplify optical hardware design while achieving high task-specific performance.

More Details

Characterization of 3D printed computational imaging element for use in task-specific compressive classification

Proceedings of SPIE - The International Society for Optical Engineering

Birch, Gabriel C.; Redman, Brian J.; Dagel, Amber L.; Kaehr, Bryan J.; Dagel, Daryl D.; LaCasse, Charles F.; Quach, Tu-Thach Q.; Sahakian, Meghan A.

We investigate the feasibility of additively manufacturing optical components to accomplish task-specific classification in a computational imaging device. We report on the design, fabrication, and characterization of a non-traditional optical element that physically realizes an extremely compressed, optimized sensing matrix. The compression is achieved by designing an optical element that only samples the regions of object space most relevant to the classification algorithms, as determined by machine learning algorithms. The design process for the proposed optical element converts the optimal sensing matrix to a refractive surface composed of a minimized set of non-repeating, unique prisms. The optical elements are 3D printed using a Nanoscribe, which uses two-photon polymerization for high-precision printing. We describe the design of several computational imaging prototype elements. We characterize these components, including surface topography, surface roughness, and angle of prism facets of the as-fabricated elements.

More Details

Design and evaluation of task-specific compressive optical systems

Proceedings of SPIE - The International Society for Optical Engineering

Redman, Brian J.; Birch, Gabriel C.; LaCasse, Charles F.; Dagel, Amber L.; Quach, Tu-Thach Q.; Sahakian, Meghan A.

Many optical systems are used for specific tasks such as classification. Of these systems, the majority are designed to maximize image quality for human observers; however, machine learning classification algorithms do not require the same data representation used by humans. In this work we investigate compressive optical systems optimized for a specific machine sensing task. Two compressive optical architectures are examined: An array of prisms and neutral density filters where each prism and neutral density filter pair realizes one datum from an optimized compressive sensing matrix, and another architecture using conventional optics to image the aperture onto the detector, a prism array to divide the aperture, and a pixelated attenuation mask in the intermediate image plane. We discuss the design, simulation, and tradeoffs of these compressive imaging systems built for compressed classification of the MNSIT data set. To evaluate the tradeoffs of the two architectures, we present radiometric and raytrace models for each system. Additionally, we investigate the impact of system aberrations on classification accuracy of the system. We compare the performance of these systems over a range of compression. Classification performance, radiometric throughput, and optical design manufacturability are discussed.

More Details

Design and evaluation of task-specific compressive optical systems

Proceedings of SPIE - The International Society for Optical Engineering

Redman, Brian J.; Birch, Gabriel C.; LaCasse, Charles F.; Dagel, Amber L.; Quach, Tu-Thach Q.; Sahakian, Meghan A.

Many optical systems are used for specific tasks such as classification. Of these systems, the majority are designed to maximize image quality for human observers; however, machine learning classification algorithms do not require the same data representation used by humans. In this work we investigate compressive optical systems optimized for a specific machine sensing task. Two compressive optical architectures are examined: An array of prisms and neutral density filters where each prism and neutral density filter pair realizes one datum from an optimized compressive sensing matrix, and another architecture using conventional optics to image the aperture onto the detector, a prism array to divide the aperture, and a pixelated attenuation mask in the intermediate image plane. We discuss the design, simulation, and tradeoffs of these compressive imaging systems built for compressed classification of the MNSIT data set. To evaluate the tradeoffs of the two architectures, we present radiometric and raytrace models for each system. Additionally, we investigate the impact of system aberrations on classification accuracy of the system. We compare the performance of these systems over a range of compression. Classification performance, radiometric throughput, and optical design manufacturability are discussed.

More Details

Physical Security Assessment Using Temporal Machine Learning

Proceedings - International Carnahan Conference on Security Technology

Sahakian, Meghan A.; Verzi, Stephen J.; Birch, Gabriel C.; Stubbs, Jaclynn J.; Woo, Bryana L.; Kouhestani, Camron G.

Nuisance and false alarms are prevalent in modern physical security systems and often overwhelm the alarm station operators. Deep learning has shown progress in detection and classification tasks, however, it has rarely been implemented as a solution to reduce the nuisance and false alarm rates in a physical security systems. Previous work has shown that transfer learning using a convolutional neural network can provide benefit to physical security systems by achieving high accuracy of physical security targets [10]. We leverage this work by coupling the convolutional neural network, which operates on a frame-by-frame basis, with temporal algorithms which evaluate a sequence of such frames (e.g. video analytics). We discuss several alternatives for performing this temporal analysis, in particular Long Short-Term Memory and Liquid State Machine, and demonstrate their respective value on exemplar physical security videos. We also outline an architecture for developing an ensemble learner which leverages the strength of each individual algorithm in its aggregation. The incorporation of these algorithms into physical security systems creates a new paradigm in which we aim to decrease the volume of nuisance and false alarms in order to allow the alarm station operators to focus on the most relevant threats.

More Details

Optical systems for task-specific compressive classification

Proceedings of SPIE - The International Society for Optical Engineering

Birch, Gabriel C.; Quach, Tu-Thach Q.; Sahakian, Meghan A.; LaCasse, Charles F.; Dagel, Amber L.

Advancements in machine learning (ML) and deep learning (DL) have enabled imaging systems to perform complex classification tasks, opening numerous problem domains to solutions driven by high quality imagers coupled with algorithmic elements. However, current ML and DL methods for target classification typically rely upon algorithms applied to data measured by traditional imagers. This design paradigm fails to enable the ML and DL algorithms to influence the sensing device itself, and treats the optimization of the sensor and algorithm as separate sequential elements. Additionally, this current paradigm narrowly investigates traditional images, and therefore traditional imaging hardware, as the primary means of data collection. We investigate alternative architectures for computational imaging systems optimized for specific classification tasks, such as digit classification. This involves a holistic approach to the design of the system from the imaging hardware to algorithms. Techniques to find optimal compressive representations of training data are discussed, and most-useful object-space information is evaluated. Methods to translate task-specific compressed data representations into non-traditional computational imaging hardware are described, followed by simulations of such imaging devices coupled with algorithmic classification using ML and DL techniques. Our approach allows for inexpensive, efficient sensing systems. Reduced storage and bandwidth are achievable as well since data representations are compressed measurements which is especially important for high data volume systems.

More Details

Temporal Cyber Attack Detection

Ingram, Joey; Draelos, Timothy J.; Sahakian, Meghan A.; Doak, Justin E.

Rigorous characterization of the performance and generalization ability of cyber defense systems is extremely difficult, making it hard to gauge uncertainty, and thus, confidence. This difficulty largely stems from a lack of labeled attack data that fully explores the potential adversarial space. Currently, performance of cyber defense systems is typically evaluated in a qualitative manner by manually inspecting the results of the system on live data and adjusting as needed. Additionally, machine learning has shown promise in deriving models that automatically learn indicators of compromise that are more robust than analyst-derived detectors. However, to generate these models, most algorithms require large amounts of labeled data (i.e., examples of attacks). Algorithms that do not require annotated data to derive models are similarly at a disadvantage, because labeled data is still necessary when evaluating performance. In this work, we explore the use of temporal generative models to learn cyber attack graph representations and automatically generate data for experimentation and evaluation. Training and evaluating cyber systems and machine learning models requires significant, annotated data, which is typically collected and labeled by hand for one-off experiments. Automatically generating such data helps derive/evaluate detection models and ensures reproducibility of results. Experimentally, we demonstrate the efficacy of generative sequence analysis techniques on learning the structure of attack graphs, based on a realistic example. These derived models can then be used to generate more data. Additionally, we provide a roadmap for future research efforts in this area.

More Details

Optimization-based computation with spiking neurons

Proceedings of the International Joint Conference on Neural Networks

Verzi, Stephen J.; Vineyard, Craig M.; Vugrin, Eric D.; Sahakian, Meghan A.; James, Conrad D.; Aimone, James B.

Considerable effort is currently being spent designing neuromorphic hardware for addressing challenging problems in a variety of pattern-matching applications. These neuromorphic systems offer low power architectures with intrinsically parallel and simple spiking neuron processing elements. Unfortunately, these new hardware architectures have been largely developed without a clear justification for using spiking neurons to compute quantities for problems of interest. Specifically, the use of spiking for encoding information in time has not been explored theoretically with complexity analysis to examine the operating conditions under which neuromorphic computing provides a computational advantage (time, space, power, etc.) In this paper, we present and formally analyze the use of temporal coding in a neural-inspired algorithm for optimization-based computation in neural spiking architectures.

More Details
Results 26–50 of 51
Results 26–50 of 51