Publications

Publications / Conference Poster

Characterization of 3D printed computational imaging element for use in task-specific compressive classification

Birch, Gabriel C.; Redman, Brian J.; Dagel, Amber L.; Kaehr, Bryan J.; Dagel, Daryl D.; LaCasse, Charles F.; Quach, Tu-Thach Q.; Galiardi, Meghan

We investigate the feasibility of additively manufacturing optical components to accomplish task-specific classification in a computational imaging device. We report on the design, fabrication, and characterization of a non-traditional optical element that physically realizes an extremely compressed, optimized sensing matrix. The compression is achieved by designing an optical element that only samples the regions of object space most relevant to the classification algorithms, as determined by machine learning algorithms. The design process for the proposed optical element converts the optimal sensing matrix to a refractive surface composed of a minimized set of non-repeating, unique prisms. The optical elements are 3D printed using a Nanoscribe, which uses two-photon polymerization for high-precision printing. We describe the design of several computational imaging prototype elements. We characterize these components, including surface topography, surface roughness, and angle of prism facets of the as-fabricated elements.