Publications

Results 51–75 of 78

Search results

Jump to search filters

Groundwork for Universal Canister System Development

Price, Laura L.; Gross, Mike; Prouty, Jeralyn L.; Rigali, Mark J.; Craig, Brian; Han, Zenghu; Lee, John H.; Liu, Yung; Pope, Ron; Connolly, Kevin; Feldman, Matt; Jarrell, Josh; Radulescu, Georgeta; Scaglione, John; Wells, Alan

The mission of the United States Department of Energy's Office of Environmental Management is to complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and go vernment - sponsored nuclear energy re search. S ome of the waste s that that must be managed have be en identified as good candidates for disposal in a deep borehole in crystalline rock (SNL 2014 a). In particular, wastes that can be disposed of in a small package are good candidates for this disposal concept. A canister - based system that can be used for handling these wastes during the disposition process (i.e., storage, transfers, transportation, and disposal) could facilitate the eventual disposal of these wastes. This report provides information for a program plan for developing specifications regarding a canister - based system that facilitates small waste form packaging and disposal and that is integrated with the overall efforts of the DOE's Office of Nuclear Energy Used Fuel Dis position Camp aign's Deep Borehole Field Test . Groundwork for Universal Ca nister System Development September 2015 ii W astes to be considered as candidates for the universal canister system include capsules containing cesium and strontium currently stored in pools at the Hanford Site, cesium to be processed using elutable or nonelutable resins at the Hanford Site, and calcine waste from Idaho National Laboratory. The initial emphasis will be on disposal of the cesium and strontium capsules in a deep borehole that has been drilled into crystalline rock. Specifications for a universal canister system are derived from operational, performance, and regulatory requirements for storage, transfers, transportation, and disposal of radioactive waste. Agreements between the Department of Energy and the States of Washington and Idaho, as well as the Deep Borehole Field Test plan provide schedule requirements for development of the universal canister system . Future work includes collaboration with the Hanford Site to move the cesium and strontium capsules into dry storage, collaboration with the Deep Borehole Field Tes t to develop surface handling and emplacement techniques and to develop the waste package design requirements, developing universal canister system design options and concepts of operations, and developing system analysis tools. Areas in which f urther research and development are needed include material properties and structural integrity, in - package sorbents and fillers, waste form tolerance to heat and postweld stress relief, waste package impact limiters, sensors, cesium mobility under downhol e conditions, and the impact of high pressure and high temperature environment on seals design.

More Details

Improving water quality for human and livestock consumption on cattle ranches in Lincoln and Socorro Counties New Mexico

Teich-McGoldrick, Stephanie T.; Ilgen, Anastasia G.; Dwyer, Brian P.; Rigali, Mark J.; Stewart, Thomas A.

This report summarizes the assistance provided to Shafer Ranches, Inc., Hightower Ranch, and Western Environmental by Sandia National Laboratories under a Leveraged New Mexico Small Business Assistance grant. The work was conducted between April to November, 2014. Therefore, Sandia National Laboratories has been asked to investigate and develop a water treatment system that would result in reduced cost associated with infrastructure, maintenance, elimination of importing water, and improved cattle health.

More Details

Nanotechnology applications to desalination : a report for the joint water reuse & desalination task force

Rigali, Mark J.

Nanomaterials and nanotechnology methods have been an integral part of international research over the past decade. Because many traditional water treatment technologies (e.g. membrane filtration, biofouling, scale inhibition, etc.) depend on nanoscale processes, it is reasonable to expect one outcome of nanotechnology research to be better, nano-engineered water treatment approaches. The most immediate, and possibly greatest, impact of nanotechnology on desalination methods will likely be the development of membranes engineered at the near-molecular level. Aquaporin proteins that channel water across cell membranes with very low energy inputs point to the potential for dramatically improved performance. Aquaporin-laced polymer membranes and aquaporin-mimicking carbon nanotubes and metal oxide membranes developed in the lab support this. A critical limitation to widespread use of nanoengineered desalination membranes will be their scalability to industrial fabrication processes. Subsequent, long-term improvements in nanoengineered membranes may result in self-healing membranes that ideally are (1) more resistant to biofouling, (2) have biocidal properties, and/or (3) selectively target trace contaminants.

More Details
Results 51–75 of 78
Results 51–75 of 78