Cradle-to-grave Modeling of Structural Foam
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of the Mechanics and Physics of Solids
Network polymers with thermally reversible linkages include functionalities that continuously break and form covalent bonds. These processes dynamically change the network connectivity, which produces three distinct behaviors compared with conventional thermosetting polymers (in which the network connectivity is static): permanent shape evolution in the rubbery state; dependence of the number density of chains and associated thermal and mechanical properties on temperature and chemical composition; and a gel-point transition temperature above which the connectivity of the network falls below the percolation threshold, and the material response changes from a solid to liquid. This last property allows such materials to be non-mechanically removed, which is an attractive material capability for encapsulation in specialized electronics packaging applications wherein system maintenance is required. Given their complex, multi-physics behavior, appropriate simulation tools are needed to aid in their use. To meet this need, a thermodynamically consistent constitutive model is developed that accounts for the thermal-chemical- mechanical behavior of such materials. This model includes a representation for the permanent shape evolution that accompanies the dynamic network connectivity as well as non-equilibrium viscoelastic behavior to represent the material's glassy response. Analytic solutions in the rubbery state are derived to show the effects of competing time scales in the material, and the model is calibrated and validated against experimental data published in the literature. Finally, simple encapsulation scenarios are examined that demonstrate a substantial difference in behavior between conventional polymer networks and those with thermally reversible linkages under thermal-mechanical cycling. © 2013 Elsevier Ltd.
Journal of the Electrochemical Society
Lithium-ion battery electrodes rely on a percolated network of solid particles and binder that must maintain a high electronic conductivity in order to function. Coupled mechanical and electrochemical simulations may be able to elucidate the mechanisms for capacity fade. We present a framework for coupled simulations of electrode mechanics that includes swelling, deformation, and stress generation driven by lithium intercalation. These simulations are performed at the mesoscale, which requires 3D reconstruction of the electrode microstructure from experimental imaging or particle size distributions. We present a novel approach for utilizing these complex reconstructions within a finite element code. A mechanical model that involves anisotropic swelling in response to lithium intercalation drives the deformation. Stresses arise from small-scale particle features and lithium concentration gradients. However, we demonstrate, for the first time, that the largest stresses arise from particle-to-particle contacts, making it important to accurately represent the electrode microstructure on the multi-particle scale. Including anisotropy in the swelling mechanics adds considerably more complexity to the stresses and can significantly enhance peak particle stresses. Shear forces arise at contacts due to the misorientation of the lattice structure. These simulations will be used to study mechanical degradation of the electrode structure through charge/discharge cycles.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in International Journal for Numerical Methods in Engineering.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Light activated polymers, which are capable of mechanically responding to light, promise to offer exciting, innovative, and unique material capabilities. Such materials include: photo-radical mediated cleavage and reformation of the polymer backbone in cross-linked elastomers that results in local stress relaxation; photo-switching cross-links in shape memory polymers; and photo-isomerization of azobenzene groups contained in liquid crystal elastomers. In this paper, using our recent material model that couples multiphysical processes involved in light-activated polymers, we demonstrate that a variety of patterns can be created on light activated polymer thin films when coupling mechanical deformation with light irradiation. Here, the polymer thin film is first stretched uniaxially or biaxially. Light is then irradiated on the surface of the thin film. After light irradiation, removal external load partially recovers the initial stretching of the polymer thin film and induces patterns. The variation of the geometry of the patterns can be controlled by a variety of parameters such as initial stretching, light intensity, etc. Photo-patterning with light activated polymer therefore offers a novel way to create surface patterns.