Publications

Results 26–50 of 113

Search results

Jump to search filters

Cryogenic specimens for nanoscale characterization of solid–liquid interfaces

MRS Bulletin

Zachman, Michael J.; De Jonge, Niels; Fischer, Robert; Perea, Daniel E.; Jungjohann, Katherine L.

We report new cryogenic characterization techniques for exploring the nanoscale structure and chemistry of intact solid–liquid interfaces have recently been developed. These techniques provide high-resolution information about buried interfaces from large samples or devices that cannot be obtained by other means. These advancements were enabled by the development of instrumentation for cryogenic focused ion beam liftout, which allows intact solid–liquid interfaces to be extracted from large samples and thinned to electron-transparent thicknesses for characterization by cryogenic scanning transmission electron microscopy or atom probe tomography. Future implementation of these techniques will complement current strides in imaging of materials in fluid environments by in situ liquid-phase electron microscopy, providing a more complete understanding of the morphology, surface chemistry, and dynamic processes that occur at solid–liquid interfaces.

More Details

Localized corrosion of low-carbon steel at the nanoscale

npj Materials Degradation

Jungjohann, Katherine L.; Chisholm, Claire; Grudt, Rachael O.; Aguiar, Jeffery A.; Mook, William M.; Kotula, Paul G.; Pilyugina, Tatiana S.; Bufford, Daniel C.; Hattar, Khalid M.; Kucharski, Timothy J.; Taie, Ihsan M.; Ostraat, Michele L.

Mitigating corrosion remains a daunting challenge due to localized, nanoscale corrosion events that are poorly understood but are known to cause unpredictable variations in material longevity. Here, the most recent advances in liquid-cell transmission electron microscopy were employed to capture the advent of localized aqueous corrosion in carbon steel at the nanoscale and in real time. Localized corrosion initiated at a triple junction formed by a solitary cementite grain and two ferrite grains and then continued at the electrochemically-active boundary between these two phases. With this analysis, we identified facetted pitting at the phase boundary, uniform corrosion rates from the steel surface, and data that suggest that a re-initiating galvanic corrosion mechanism is possible in this environment. These observations represent an important step toward atomically defining nanoscale corrosion mechanisms, enabling the informed development of next-generation inhibition technologies and the improvement of corrosion predictive models.

More Details

Structural and electrical characterization of thick GaN layers on Si, GaN, and engineered substrates

Journal of Applied Physics

Jungjohann, Katherine L.; Tanaka, Atsunori; Choi, Woojin; Chen, Renjie; Liu, Ren; Mook, William M.; Yu, Paul K.L.; Dayeh, Shadi A.

A major challenge in gallium nitride (GaN) vertical power devices and other large bandgap materials is the high defect density that compromises the performance, reliability, and yield. Defects are typically nucleated at the heterointerface where there are both lattice and thermal mismatches. Here, we report the selective area growth (SAG) of thick GaN on Si and on the newly available Qromis Substrate Technology™ (QST) substrates that lead to a significant reduction of the defect densities to a level that is nearly comparable to that on native substrates by defect annihilation. We performed a parametric study of the electrical properties of the SAG GaN layers by fabricating and characterizing Schottky barrier diodes for SAG GaN layer thicknesses of 5, 10, 15, and 20 μm for GaN-on-Si, GaN-on-QST, and GaN-on-GaN diodes. While thicker layers led to a significant reduction in defect densities and improvement in the diode forward current characteristics, the GaN-on-QST diodes exhibited nearly similar characteristics to the GaN-on-GaN diodes. Further improvement in the device structure and/or SAG growth for GaN-on-Si is needed to achieve a comparable performance as the defect densities in the GaN-on-Si are comparable to that of GaN-on-QST substrates.

More Details

Lithium Self-Discharge and Its Prevention: Direct Visualization through in Situ Electrochemical Scanning Transmission Electron Microscopy

ACS Nano

Harrison, Katharine L.; Zavadil, Kevin R.; Hahn, Nathan H.; Meng, Xiangbo; Elam, Jeffrey W.; Leenheer, Andrew J.; Zhang, Ji G.; Jungjohann, Katherine L.

To understand the mechanism that controls low-aspect-ratio lithium deposition morphologies for Li-metal anodes in batteries, we conducted direct visualization of Li-metal deposition and stripping behavior through nanoscale in situ electrochemical scanning transmission electron microscopy (EC-STEM) and macroscale-cell electrochemistry experiments in a recently developed and promising solvate electrolyte, 4 M lithium bis(fluorosulfonyl)imide in 1,2-dimethoxyethane. In contrast to published coin cell studies in the same electrolyte, our experiments revealed low Coulombic efficiencies and inhomogeneous Li morphology during in situ observation. We conclude that this discrepancy in Coulombic efficiency and morphology of the Li deposits was dependent on the presence of a compressed lithium separator interface, as we have confirmed through macroscale (not in the transmission electron microscope) electrochemical experiments. Our data suggests that cell compression changed how the solid-electrolyte interphase formed, which is likely responsible for improved morphology and Coulombic efficiency with compression. Furthermore, during the in situ EC-STEM experiments, we observed direct evidence of nanoscale self-discharge in the solvate electrolyte (in the state of electrical isolation). This self-discharge was duplicated in the macroscale, but it was less severe with electrode compression, likely due to a more passivating and corrosion-resistant solid-electrolyte interphase formed in the presence of compression. By combining the solvate electrolyte with a protective LiAl0.3S coating, we show that the Li nucleation density increased during deposition, leading to improved morphological uniformity. Furthermore, self-discharge was suppressed during rest periods in the cycling profile with coatings present, as evidenced through EC-STEM and confirmed with coin cell data.

More Details

Construction Vibration Impacts on the Center for Integrated Nanotechnologies

Hearne, Sean J.; Kostranchuk, Theodore K.; Jungjohann, Katherine L.; Bussmann, Ezra B.; Swartzentruber, Brian S.; Weiss, Karl; Wowk, Victor W.

Under the direction of the James W. Todd, Assistant Manager for Engineering within the National Nuclear Security Administration Sandia Field Office, the team listed above has performed the attached study to evaluate the vibration sensitivity of the Center for Integrated Nanotechnolog ies and propose possible mitigation strategies .

More Details

Spatial Heterogeneities and Onset of Passivation Breakdown at Lithium Anode Interfaces

Journal of Physical Chemistry C

Leung, Kevin L.; Jungjohann, Katherine L.

Effective passivation of lithium metal surfaces, and prevention of battery-shorting lithium dendrite growth, are critical for implementing lithium metal anodes for batteries with increased power densities. Nanoscale surface heterogeneities can be "hot spots" where anode passivation breaks down. Motivated by the observation of lithium dendrites in pores and grain boundaries in all-solid batteries, we examine lithium metal surfaces covered with Li2O and/or LiF thin films with grain boundaries in them. Electronic structure calculations show that at >0.25 V computed equilibrium overpotential Li2O grain boundaries with sufficiently large pores can accommodate Li0 atoms which aid e- leakage and passivation breakdown. Strain often accompanies Li insertion; applying an ∼1.7% strain already lowers the computed overpotential to 0.1 V. Lithium metal nanostructures as thin as 12 Å are thermodynamically favored inside cracks in Li2O films, becoming "incipient lithium filaments". LiF films are more resistant to lithium metal growth. The models used herein should in turn inform passivating strategies in all-solid-state batteries.

More Details
Results 26–50 of 113
Results 26–50 of 113