In the near future, grid operators are expected to regularly use advanced distributed energy resource (DER) functions, defined in IEEE 1547-2018, to perform a range of grid-support operations. Many of these functions adjust the active and reactive power of the device through commanded or autonomous modes, which will produce new stresses on the grid-interfacing power electronics components, such as DC/AC inverters. In previous work, multiple DER devices were instrumented to evaluate additional component stress under multiple reactive power setpoints. We utilize quasi-static time-series simulations to determine voltage-reactive power mode (volt-var) mission profile of inverters in an active power system. Mission profiles and loss estimates are then combined to estimate the reduction of the useful life of inverters from different reactive power profiles. It was found that the average lifetime reduction was approximately 0.15% for an inverter between standard unity power factor operation and the IEEE 1547 default volt-var curve based on thermal damage due to switching in the power transistors. For an inverter with an expected 20-year lifetime, the 1547 volt-var curve would reduce the expected life of the device by 12 days. This framework for determining an inverter's useful life from experimental and modeling data can be applied to any failure mechanism and advanced inverter operation.
In the near future, grid operators are expected to regularly use advanced distributed energy resource (DER) functions, defined in IEEE 1547-2018, to perform a range of grid-support operations. Many of these functions adjust the active and reactive power of the device through commanded or autonomous modes, which will produce new stresses on the grid-interfacing power electronics components, such as DC/AC inverters. In previous work, multiple DER devices were instrumented to evaluate additional component stress under multiple reactive power setpoints. We utilize quasi-static time-series simulations to determine voltage-reactive power mode (volt-var) mission profile of inverters in an active power system. Mission profiles and loss estimates are then combined to estimate the reduction of the useful life of inverters from different reactive power profiles. It was found that the average lifetime reduction was approximately 0.15% for an inverter between standard unity power factor operation and the IEEE 1547 default volt-var curve based on thermal damage due to switching in the power transistors. For an inverter with an expected 20-year lifetime, the 1547 volt-var curve would reduce the expected life of the device by 12 days. This framework for determining an inverter's useful life from experimental and modeling data can be applied to any failure mechanism and advanced inverter operation.
Frequent changes in penetration levels of distributed energy resources (DERs) and grid control objectives have caused the maintenance of accurate and reliable grid models for behind-the-meter (BTM) photovoltaic (PV) system impact studies to become an increasingly challenging task. At the same time, high adoption rates of advanced metering infrastructure (AMI) devices have improved load modeling techniques and have enabled the application of machine learning algorithms to a wide variety of model calibration tasks. Therefore, we propose that these algorithms can be applied to improve the quality of the input data and grid models used for PV impact studies. In this paper, these potential improvements were assessed for their ability to improve the accuracy of locational BTM PV hosting capacity analysis (HCA). Specifically, the voltage- and thermal-constrained hosting capacities of every customer location on a distribution feeder (1,379 in total) were calculated every 15 minutes for an entire year before and after each calibration algorithm or load modeling technique was applied. Overall, the HCA results were found to be highly sensitive to the various modeling deficiencies under investigation, illustrating the opportunity for more data-centric/model-free approaches to PV impact studies.
Reno, Matthew J.; Blakely, Logan; Trevizan, Rodrigo D.; Pena, Bethany D.; Lave, Matt; Azzolini, Joseph A.; Yusuf, Jubair; Jones, Christian B.; Furlani Bastos, Alvaro; Chalamala, Rohit; Korkali, Mert; Sun, Chih-Che; Donadee, Jonathan; Stewart, Emma M.; Donde, Vaibhav; Peppanen, Jouni; Hernandez, Miguel; Deboever, Jeremiah; Rocha, Celso; Rylander, Matthew; Siratarnsophon, Piyapath; Grijalva, Santiago; Talkington, Samuel; Gomez-Peces, Cristian; Mason, Karl; Vejdan, Sadegh; Khan, Ahmad U.; Mbeleg, Jordan S.; Ashok, Kavya; Divan, Deepak; Li, Feng; Therrien, Francis; Jacques, Patrick; Rao, Vittal; Francis, Cody; Zaragoza, Nicholas; Nordy, David; Glass, Jim
This report summarizes the work performed under a project funded by U.S. DOE Solar Energy Technologies Office (SETO) to use grid edge measurements to calibrate distribution system models for improved planning and grid integration of solar PV. Several physics-based data-driven algorithms are developed to identify inaccuracies in models and to bring increased visibility into distribution system planning. This includes phase identification, secondary system topology and parameter estimation, meter-to-transformer pairing, medium-voltage reconfiguration detection, determination of regulator and capacitor settings, PV system detection, PV parameter and setting estimation, PV dynamic models, and improved load modeling. Each of the algorithms is tested using simulation data and demonstrated on real feeders with our utility partners. The final algorithms demonstrate the potential for future planning and operations of the electric power grid to be more automated and data-driven, with more granularity, higher accuracy, and more comprehensive visibility into the system.
Recent trends in PV economics and advanced inverter functionalities have contributed to the rapid growth in PV adoption; PV modules have gotten much cheaper and advanced inverters can deliver a range of services in support of grid operations. However, these phenomena also provide conditions for PV curtailment, where high penetrations of distributed PV often necessitate the use of advanced inverter functions with VAR priority to address abnormal grid conditions like over- and under-voltages. This paper presents a detailed energy loss analysis, using a combination of open-source PV modeling tools and high-resolution time-series simulations, to place the magnitude of clipped and curtailed PV energy in context with other operational sources of PV energy loss. The simulations were conducted on a realistic distribution circuit, modified to include utility load data and 341 modeled PV systems at 25% of the customer locations. The results revealed that the magnitude of clipping losses often overshadows that of curtailment but, on average, both were among the lowest contributors to total annual PV energy loss. However, combined clipping and curtailment loss are likely to become more prevalent as recent trends continue.
Grid support functionalities from advanced PV inverters are increasingly being utilized to help regulate grid conditions and enable high PV penetration levels. To ensure a high degree of reliability, it is paramount that protective devices respond properly to a variety of fault conditions. However, while the fault response of PV inverters operating at unity power factor has been well documented, less work has been done to characterize the fault contributions and impacts of advanced inverters with grid support enabled under conditions like voltage sags and phase angle jumps. To address this knowledge gap, this paper presents experimental results of a three-phase photovoltaic inverter's response during and after a fault to investigate how PV systems behave under fault conditions when operating with and without a grid support functionality (autonomous Volt-Var) enabled. Simulations were then conducted to quantify the potential impact of the experimental findings on protection systems. It was observed that fault current magnitudes across several protective devices were impacted by non-unity power factor operating conditions, suggesting that protection settings may need to be studied and updated whenever grid support functions are enabled or modified.
Grid support functionalities from advanced PV inverters are increasingly being utilized to help regulate grid conditions and enable high PV penetration levels. To ensure a high degree of reliability, it is paramount that protective devices respond properly to a variety of fault conditions. However, while the fault response of PV inverters operating at unity power factor has been well documented, less work has been done to characterize the fault contributions and impacts of advanced inverters with grid support enabled under conditions like voltage sags and phase angle jumps. To address this knowledge gap, this paper presents experimental results of a three-phase photovoltaic inverter's response during and after a fault to investigate how PV systems behave under fault conditions when operating with and without a grid support functionality (autonomous Volt-Var) enabled. Simulations were then conducted to quantify the potential impact of the experimental findings on protection systems. It was observed that fault current magnitudes across several protective devices were impacted by non-unity power factor operating conditions, suggesting that protection settings may need to be studied and updated whenever grid support functions are enabled or modified.
The rapid increase in penetration of distributed energy resources on the electric power distribution system has created a need for more comprehensive interconnection modeling and impact analysis. Unlike conventional scenario-based studies, quasi-static time-series (QSTS) simulations can realistically model time-dependent voltage controllers and the diversity of potential impacts that can occur at different times of year. However, to accurately model a distribution system with all its controllable devices, a yearlong simulation at 1-second resolution is often required, which could take conventional computers a computational time of 10 to 120 hours when an actual unbalanced distribution feeder is modeled. This computational burden is a clear limitation to the adoption of QSTS simulations in interconnection studies and for determining optimal control solutions for utility operations. The solutions we developed include accurate and computationally efficient QSTS methods that could be implemented in existing open-source and commercial software used by utilities and the development of methods to create high-resolution proxy data sets. This project demonstrated multiple pathways for speeding up the QSTS computation using new and innovative methods for advanced time-series analysis, faster power flow solvers, parallel processing of power flow solutions and circuit reduction. The target performance level for this project was achieved with year-long high-resolution time series solutions run in less than 5 minutes within an acceptable error.
By strategically curtailing active power and providing reactive power support, photovoltaic (PV) systems with advanced inverters can mitigate voltage and thermal violations in distribution networks. Quasi-static time-series (QSTS) simulations are increasingly being utilized to study the implementation of these inverter functions as alternatives to traditional circuit upgrades. However, QSTS analyses can yield significantly different results based on the availability and resolution of input data and other modeling considerations. In this paper, we quantified the uncertainty of QSTS-based curtailment evaluations for two different grid-support functions (autonomous Volt-Var and centralized PV curtailment for preventing reverse power conditions) through extensive sensitivity analyses and hardware testing. We found that Volt-Var curtailment evaluations were most sensitive to poor inverter convergence (-56.4%), PV time-series data (-18.4% to +16.5%), QSTS resolution (-15.7%), and inverter modeling uncertainty (+14.7%), while the centralized control case was most sensitive to load modeling (-26.5% to +21.4%) and PV time-series data (-6.0% to +12.4%). These findings provide valuable insights for improving the reliability and accuracy of QSTS analyses for evaluating curtailment and other PV impact studies.
Advanced solar PV inverter control settings may not be reported to utilities or may be changed without notice. This paper develops an estimation method for determining a fixed power factor control setting of a behind-the-meter (BTM) solar PV smart inverter. The estimation is achieved using linear regression methods with historical net load advanced metering infrastructure (AMI) data. Notably, the BTM PV power factor setting may be unknown or uncertain to a distribution engineer, and cannot be trivially estimated from the historical AMI data due to the influence of the native load on the measurements. To solve this, we use a simple percentile-based approach for filtering the measurements. A physics-based linear sensitivity model is then used to determine the fixed power factor control setting from the sensitivity in the complex power plane. This sensitivity parameter characterizes the control setting hidden in the aggregate data. We compare several loss functions, and verify the models developed by conducting experiments on 250 datasets based on real smart meter data. The data are augmented with synthetic quasi-static-timeseries (QSTS) simulations of BTM PV that simulate utility-observed aggregate measurements at the load. The simulations demonstrate the reactive power sensitivity of a BTM PV smart inverter can be recovered efficiently from the net load data after applying the filtering approach.
The rising penetration levels of photovoltaic (PV) systems within distribution networks has driven considerable interest in the implementation of advanced inverter functions, like autonomous Volt- Var, to provide grid support in response to adverse conditions. Quasi-static time-series (QSTS) analyses are increasingly being utilized to evaluate advanced inverter functions on their potential benefits to the grid and to quantify the magnitude of PV power curtailment they may induce. However, these analyses require additional modeling efforts to appropriately capture the time-varying behavior of circuit elements like loads and PV systems. The contribution of this paper is to study QSTS-based curtailment evaluations with different load allocation and PV modeling practices under a variety of assumptions and data limitations. A total of 24 combinations of PV and load modeling scenarios were tested on a realistic test circuit with 1,379 loads and 701 PV systems. The results revealed that the average annual curtailment varied from the baseline value of 0.47% by an absolute difference of +0.55% to -0.43 % based on the modeling scenario.
Distributed photovoltaic (PV) systems equipped with advanced inverters can control real and reactive power output based on grid and atmospheric conditions. The Volt-Var control method allows inverters to regulate local grid voltages by producing or consuming reactive power. Based on their power ratings, the inverters may need to curtail real power to meet the reactive power requirements, which decreases their total energy production. To evaluate the expected curtailment associated with Volt-Var control, yearlong quasi-static time-series (QSTS) simulations were conducted on a realistic distribution feeder under a variety of PV system design considerations. Overall, this paper found that the amount of curtailed energy is low (< 0.55%) compared to the total PV energy production in a year but is affected by several PV system design considerations.
Quasi-static time-series (QSTS) analysis of distribution systems can provide critical information about the potential impacts of high penetrations of distributed and renewable resources, like solar photovoltaic systems. However, running high-resolution yearlong QSTS simulations of large distribution feeders can be prohibitively burdensome due to long computation times. Temporal parallelization of QSTS simulations is one possible solution to overcome this obstacle. QSTS simulations can be divided into multiple sections, e.g. into four equal parts of the year, and solved simultaneously with parallel computing. The challenge is that each time the simulation is divided, error is introduced. This paper presents various initialization methods for reducing the error associated with temporal parallelization of QSTS simulations and characterizes performance across multiple distribution circuits and several different computers with varying architectures.
Quasi-static time-series (QSTS) analysis of distribution systems can provide critical information about the potential impacts of high penetrations of distributed and renewable resources, like solar photovoltaic systems. However, running high-resolution yearlong QSTS simulations of large distribution feeders can be prohibitively burdensome due to long computation times. Temporal parallelization of QSTS simulations is one possible solution to overcome this obstacle. QSTS simulations can be divided into multiple sections, e.g. into four equal parts of the year, and solved simultaneously with parallel computing. The challenge is that each time the simulation is divided, error is introduced. This paper presents various initialization methods for reducing the error associated with temporal parallelization of QSTS simulations and characterizes performance across multiple distribution circuits and several different computers with varying architectures.
Distribution system analysis requires yearlong quasi-static time-series (QSTS) simulations to accurately capture the variability introduced by high penetrations of distributed energy resources (DER) such as residential and commercial-scale photovoltaic (PV) installations. Numerous methods are available that significantly reduce the computational time needed for QSTS simulations while maintaining accuracy. However, analyzing the results remains a challenge; a typical QSTS simulation generates millions of data points that contain critical information about the circuit and its components. This paper provides examples of visualization methods to facilitate the analysis of QSTS results and to highlight various characteristics of circuits with high variability.
Distribution system analysis requires yearlong quasi-static time-series (QSTS) simulations to accurately capture the variability introduced by high penetrations of distributed energy resources (DER) such as residential and commercial-scale photovoltaic (PV) installations. Numerous methods are available that significantly reduce the computational time needed for QSTS simulations while maintaining accuracy. However, analyzing the results remains a challenge; a typical QSTS simulation generates millions of data points that contain critical information about the circuit and its components. This paper provides examples of visualization methods to facilitate the analysis of QSTS results and to highlight various characteristics of circuits with high variability.