The Role of Microstructure and Surface Finish on the Corrosion of SLM 304L
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of the Electrochemical Society
The corrosion behavior of selective laser melted (SLM) 304L was investigated and compared to conventional wrought 304L in aqueous chloride and acidic solutions. Through immersed electrochemical testing and exposure in acidic solutions, the SLM 304L exhibited superior pitting resistance in the polished state compared to wrought 304L. However, the surface condition of the SLM material had a great impact on its corrosion resistance, with the grit-blasted condition exhibiting severely diminished pitting resistance. Local scale, capillary micro-electrochemical and scanning electrochemical microscopy investigations, identified porosity as a contributing factor to decreased corrosion resistance. Preferential corrosion attack was not observed to be related to the characteristic underlying cellular microstructure produced through SLM processing. This study highlights the effects of SLM microstructural features on corrosion resistance, specifically the substantial influence of surface finish on SLM corrosion behavior and the need for development and optimization of processing techniques to improve surface finish.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Advanced Engineering Materials
Additive manufacturing enables the rapid, cost effective production of customized structural components. To fully capitalize on the agility of additive manufacturing, it is necessary to develop complementary high-throughput materials evaluation techniques. In this study, over 1000 nominally identical tensile tests are used to explore the effect of process variability on the mechanical property distributions of a precipitation hardened stainless steel produced by a laser powder bed fusion process, also known as direct metal laser sintering or selective laser melting. With this large dataset, rare defects are revealed that affect only ≈2% of the population, stemming from a single build lot of material. The rare defects cause a substantial loss in ductility and are associated with an interconnected network of porosity. The adoption of streamlined test methods will be paramount to diagnosing and mitigating such dangerous anomalies in future structural components.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Corrosion
The corrosion susceptibility of a laser powder bed fusion (LPBF) additively manufactured alloy, UNS S17400 (17-4 PH), was explored compared to conventional wrought material. Microstructural characteristics were characterized and related to corrosion behavior in quiescent, aqueous 0.6 M NaCl solutions. Electrochemical measurements demonstrated that the LPBF 17-4 PH alloy exhibited a reduced passivity range and active corrosion compared to its conventional wrought counterpart. A microelectrochemical cell was used to further understand the effects of the local scale and attributed the reduced corrosion resistance of the LPBF material to pores with diameters ≥50 μm.
Abstract not provided.
Abstract not provided.