Publications

Results 51–75 of 166

Search results

Jump to search filters

Cray System Monitoring: Successes Requirements and Priorities

Ahlgren, Ville; Andersson, Stefan; Brandt, James M.; Cardo, Nicholas; Chunduri, Sudheer; Enos, Jeremy; Fields, Parks; Gentile, Ann C.; Gerber, Richard; Greenseid, Joe; Greiner, Annette; Hadri, Bilel; He, Yun; Hoppe, Dennis; Kaila, Urpo; Kelly, Kaki; Klein, Mark; Kristiansen, Alex; Leak, Steve; Mason, Mike; Pedretti, Kevin; Piccinali, Jean-Guillaume; Repik, Jason; Rogers, Jim; Salminen, Susanna; Showerman, Mike; Whitney, Cary; Williams, Jim

Abstract not provided.

Cray System Monitoring: Successes Requirements and Priorities

Ahlgren, Ville; Andersson, Stefan; Brandt, James M.; Cardo, Nicholas; Chunduri, Sudheer; Enos, Jeremy; Fields, Parks; Gentile, Ann C.; Gerber, Richard; Greenseid, Joe; Greiner, Annette; Hadri, Bilel; He, Yun; Hoppe, Dennis; Kaila, Urpo; Kelly, Kaki; Klein, Mark; Kristiansen, Alex; Leak, Steve; Mason, Mike; Pedretti, Kevin; Piccinali, Jean-Guillaume; Repik, Jason; Rogers, Jim; Salminen, Susanna; Showerman, Mike; Whitney, Cary; Williams, Jim

Abstract not provided.

Taxonomist: Application Detection Through Rich Monitoring Data

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Ates, Emre; Tuncer, Ozan; Turk, Ata; Leung, Vitus J.; Brandt, James M.; Egele, Manuel; Coskun, Ayse K.

Modern supercomputers are shared among thousands of users running a variety of applications. Knowing which applications are running in the system can bring substantial benefits: knowledge of applications that intensively use shared resources can aid scheduling; unwanted applications such as cryptocurrency mining or password cracking can be blocked; system architects can make design decisions based on system usage. However, identifying applications on supercomputers is challenging because applications are executed using esoteric scripts along with binaries that are compiled and named by users. This paper introduces a novel technique to identify applications running on supercomputers. Our technique, Taxonomist, is based on the empirical evidence that applications have different and characteristic resource utilization patterns. Taxonomist uses machine learning to classify known applications and also detect unknown applications. We test our technique with a variety of benchmarks and cryptocurrency miners, and also with applications that users of a production supercomputer ran during a 6 month period. We show that our technique achieves nearly perfect classification for this challenging data set.

More Details

Holistic measurement-driven system assessment

Proceedings - IEEE International Conference on Cluster Computing, ICCC

Jha, Saurabh; Brandt, James M.; Gentile, Ann C.; Kalbarczyk, Zbigniew; Bauer, Greg; Enos, Jeremy; Showerman, Michael; Kaplan, Larry; Bode, Brett; Greiner, Annette; Bonnie, Amanda; Mason, Mike; Iyer, Ravishankar K.; Kramer, William

In high-performance computing systems, application performance and throughput are dependent on a complex interplay of hardware and software subsystems and variable workloads with competing resource demands. Data-driven insights into the potentially widespread scope and propagationof impact of events, such as faults and contention for shared resources, can be used to drive more effective use of resources, for improved root cause diagnosis, and for predicting performance impacts. We present work developing integrated capabilities for holistic monitoring and analysis to understand and characterize propagation of performance-degrading events. These characterizations can be used to determine and invoke mitigating responses by system administrators, applications, and system software.

More Details

Diagnosing performance variations in HPC applications using machine learning

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Tuncer, Ozan; Ates, Emre; Zhang, Yijia; Turk, Ata; Brandt, James M.; Leung, Vitus J.; Egele, Manuel; Coskun, Ayse K.

With the growing complexity and scale of high performance computing (HPC) systems, application performance variation has become a significant challenge in efficient and resilient system management. Application performance variation can be caused by resource contention as well as software- and firmware-related problems, and can lead to premature job termination, reduced performance, and wasted compute platform resources. To effectively alleviate this problem, system administrators must detect and identify the anomalies that are responsible for performance variation and take preventive actions. However, diagnosing anomalies is often a difficult task given the vast amount of noisy and high-dimensional data being collected via a variety of system monitoring infrastructures. In this paper, we present a novel framework that uses machine learning to automatically diagnose previously encountered performance anomalies in HPC systems. Our framework leverages resource usage and performance counter data collected during application runs. We first convert the collected time series data into statistical features that retain application characteristics to significantly reduce the computational overhead of our technique. We then use machine learning algorithms to learn anomaly characteristics from this historical data and to identify the types of anomalies observed while running applications. We evaluate our framework both on an HPC cluster and on a public cloud, and demonstrate that our approach outperforms current state-of-the-art techniques in detecting anomalies, reaching an F-score over 0.97.

More Details

Continuous whole-system monitoring toward rapid understanding of production HPC applications and systems

Parallel Computing

Agelastos, Anthony M.; Allan, Benjamin A.; Brandt, James M.; Gentile, Ann C.; Lefantzi, Sophia L.; Monk, Stephen T.; Ogden, Jeffry B.; Rajan, Mahesh R.; Stevenson, Joel O.

A detailed understanding of HPC applications’ resource needs and their complex interactions with each other and HPC platform resources are critical to achieving scalability and performance. Such understanding has been difficult to achieve because typical application profiling tools do not capture the behaviors of codes under the potentially wide spectrum of actual production conditions and because typical monitoring tools do not capture system resource usage information with high enough fidelity to gain sufficient insight into application performance and demands. In this paper we present both system and application profiling results based on data obtained through synchronized system wide monitoring on a production HPC cluster at Sandia National Laboratories (SNL). We demonstrate analytic and visualization techniques that we are using to characterize application and system resource usage under production conditions for better understanding of application resource needs. Our goals are to improve application performance (through understanding application-to-resource mapping and system throughput) and to ensure that future system capabilities match their intended workloads.

More Details

High Performance Computing Metrics to Enable Application-Platform Communication

Agelastos, Anthony M.; Brandt, James M.; Gentile, Ann C.; Lamb, Justin M.; Ruggirello, Kevin P.; Stevenson, Joel O.

Sandia has invested heavily in scientific/engineering application development and in the research, development, and deployment of large scale HPC platforms to support the computational needs of these applications. As application developers continually expand the capabilities of their software and spend more time on performance tuning of applications for these platforms, HPC platform resources are at a premium as they are a heavily shared resource serving the varied needs of many users. To ensure that the HPC platform resources are being used effciently and perform as designed, it is necessary to obtain reliable data on resource utilization that will allow us to investigate the occurrence, severity, and causes of performance-affecting contention between applications. The work presented in this paper was an initial step to determine if resource contention can be understood and minimized through monitoring, modeling, planning and infrastructure. This paper describes the set of metric definitions, identified in this research, that can be used as meaningful and potentially actionable indicators of performance-affecting contention between applications. These metrics were verified using the observed slowdown of IOR, IMB, and CTH in operating scenarios that forced contention. This paper also describes system/application monitoring activities that are critical to distilling vast amounts of data into quantities that hold the key to understanding for an application's performance under production conditions and that will ultimately aid in Sandia's efforts to succeed in extreme-scale computing.

More Details
Results 51–75 of 166
Results 51–75 of 166