Publications

Results 301–343 of 343

Search results

Jump to search filters

Frequency and phaselock control of a 3 THz quantum cascade laser

Proposed for publication in Optics Letters.

Reno, John L.

We have locked the frequency of a 3 THz quantum cascade laser (QCL) to that of a far-infrared gas laser with a tunable microwave offset frequency. The locked QCL line shape is essentially Gaussian, with linewidths of 65 and 141 kHz at the -3 and -10 dB levels, respectively. The lock condition can be maintained indefinitely, without requiring temperature or bias current regulation of the QCL other than that provided by the lock error signal. The result demonstrates that a terahertz QCL can be frequency controlled with 1-part-in-108 accuracy, which is a factor of 100 better than that needed for a local oscillator in a heterodyne receiver for atmospheric and astronomic spectroscopy.

More Details

Terahertz quantum cascade lasers with metal-metal waveguides

Reno, John L.

Quantum cascade lasers that operate in the underdeveloped terahertz spectral range (1-10 THz) promise to contribute to applications in sensing, spectroscopy, and imaging. We describe our development of terahertz quantum cascade lasers based on the resonant-phonon depopulation concept and that use low-loss metal-metal waveguides for optical confinement. Two- and three-dimensional finite-element simulations of terahertz metal-metal waveguides are used to demonstrate their high modal confinement even for very narrow ridges. Also, simulations predict high facet reflectivities due to the modal impedance mismatch with free space at the sub-wavelength waveguide aperture of these metal-metal waveguides. Finally, we report the demonstration of a 2.8 THz laser that operates up to 97 K in continuous-wave mode fabricated using a Cu-Cu thermocompression bonding technique.

More Details

Investigation of the spontaneous lateral modulation in short-period superlattices by grazing-incidence x-ray diffraction

Proposed for publication in Physical Review B.

Reno, John L.

The process of spontaneous lateral composition modulation in short-period InAs/AlAs superlattices has been investigated by grazing-incidence x-ray diffraction. We have developed a theoretical description of x-ray scattering from laterally modulated structures that makes it possible to determine the lateral composition modulation directly without assuming any structure model. From experimental intensity distributions in reciprocal space we have determined the amplitudes of the modulation and its degree of periodicity and their dependence on the number of superlattice periods. From the data it follows that the modulation process cannot be explained by bunching of monolayer steps and most likely, it is caused by stress-driven morphological instabilities of the growing surface.

More Details

LDRD final report on continuous wave intersubband terahertz sources

Wanke, Michael C.; Foltynowicz, Robert J.; Young, Erik W.; Mangan, Michael A.; Fuller, Charles T.; Reno, John L.; Stephenson, Larry L.; Hudgens, James J.

There is a general lack of compact electromagnetic radiation sources between 1 and 10 terahertz (THz). This a challenging spectral region lying between optical devices at high frequencies and electronic devices at low frequencies. While technologically very underdeveloped the THz region has the promise to be of significant technological importance, yet demonstrating its relevance has proven difficult due to the immaturity of the area. While the last decade has seen much experimental work in ultra-short pulsed terahertz sources, many applications will require continuous wave (cw) sources, which are just beginning to demonstrate adequate performance for application use. In this project, we proposed examination of two potential THz sources based on intersubband semiconductor transitions, which were as yet unproven. In particular we wished to explore quantum cascade lasers based sources and electronic based harmonic generators. Shortly after the beginning of the project, we shifted our emphasis to the quantum cascade lasers due to two events; the publication of the first THz quantum cascade laser by another group thereby proving feasibility, and the temporary shut down of the UC Santa Barbara free-electron lasers which were to be used as the pump source for the harmonic generation. The development efforts focused on two separate cascade laser thrusts. The ultimate goal of the first thrust was for a quantum cascade laser to simultaneously emit two mid-infrared frequencies differing by a few THz and to use these to pump a non-linear optical material to generate THz radiation via parametric interactions in a specifically engineered intersubband transition. While the final goal was not realized by the end of the project, many of the completed steps leading to the goal will be described in the report. The second thrust was to develop direct THz QC lasers operating at terahertz frequencies. This is simpler than a mixing approach, and has now been demonstrated by a few groups with wavelengths spanning 65-150 microns. We developed and refined the MBE growth for THz for both internally and externally designed QC lasers. Processing related issues continued to plague many of our demonstration efforts and will also be addressed in this report.

More Details

LDRD final report on engineered superconductivity in electron-hole bilayers

Lilly, Michael; Bielejec, Edward S.; Seamons, John; Dunn, Roberto G.; Lyo, Sungkwun K.; Reno, John L.; Stephenson, Larry L.; Baca, Wes E.; Simmons, Jerry A.

Macroscopic quantum states such as superconductors, Bose-Einstein condensates and superfluids are some of the most unusual states in nature. In this project, we proposed to design a semiconductor system with a 2D layer of electrons separated from a 2D layer of holes by a narrow (but high) barrier. Under certain conditions, the electrons would pair with the nearby holes and form excitons. At low temperature, these excitons could condense to a macroscopic quantum state either through a Bose-Einstein condensation (for weak exciton interactions) or a BCS transition to a superconductor (for strong exciton interactions). While the theoretical predictions have been around since the 1960's, experimental realization of electron-hole bilayer systems has been extremely difficult due to technical challenges. We identified four characteristics that if successfully incorporated into a device would give the best chances for excitonic condensation to be observed. These characteristics are closely spaced layers, low disorder, low density, and independent contacts to allow transport measurements. We demonstrated each of these characteristics separately, and then incorporated all of them into a single electron-hole bilayer device. The key to the sample design is using undoped GaAs/AlGaAs heterostructures processed in a field-effect transistor geometry. In such samples, the density of single 2D layers of electrons could be varied from an extremely low value of 2 x 10{sup 9} cm{sup -2} to high values of 3 x 10{sup 11} cm{sup -2}. The extreme low values of density that we achieved in single layer 2D electrons allowed us to make important contributions to the problem of the metal insulator transition in two dimensions, while at the same time provided a critical base for understanding low density 2D systems to be used in the electron-hole bilayer experiments. In this report, we describe the processing advances to fabricate single and double layer undoped samples, the low density results on single layers, and evidence for gateable undoped bilayers.

More Details

Voltage tunable two-color superlattice infrared photodetectors

Proceedings of SPIE - The International Society for Optical Engineering

Majumdar, Amlan; Choi, K.K.; Reno, John L.; Tsui, D.C.

We present the design and fabrication of voltage tunable two-color superlattice infrared photodetectors (SLIPs), where the detection wavelength switches from the long-wavelength infrared (LWIR) range to the mid-wavelength infrared (MWIR) range upon reversing the polarity of applied bias. The photoactive region of these detectors contains multiple periods of two distinct short-period SLs that are designed for MWIR and LWIR detection. The voltage tunable operation is achieved by using two types of thick blocking barriers between adjacent SLs - undoped barriers on one side for low energy electrons and heavily-doped layers on the other side for high energy electrons. We grew two SLIP structures by molecular beam epitaxy. The first one consists of two AlGaAs/GaAs SLs with the detection range switching from the 7-11 μm band to the 4-7 μm range on reversing the bias polarity. The background-limited temperature is 55 and 80 K for LWIR and MWIR detection, respectively. The second structure comprises of strained InGaAs/GaAs/AlGaAs SLs and AlGaAs/GaAs SLs. The detection range of this SLIP changes from the 8-12 μm band to the 3-5 μm band on switching the bias polarity. The background-limited temperature is 70 and 110 K for LWIR and MWIR detection, respectively. This SLIP is the first ever voltage tunable MWIR/LWIR detector with performance comparable to those of one-color quantum-well infrared detectors designed for the respective wavelength ranges. We also demonstrate that the corrugated light coupling scheme, which enables normal-incidence absorption, is suitable for the two-color SLIPs. Since these SLIPs are two-terminal devices, they can be used with the corrugated geometry for the production of low-cost large-area two-color focal plane arrays.

More Details

Tunneling and nonlinear transport in a vertically coupled GaAs/AlGaAs double quantum wire system

Proposed for publication in Applied Physics Letters.

Bielejec, Edward S.; Seamons, John; Reno, John L.; Lilly, Michael

We report low-dimensional tunneling in an independently contacted vertically coupled quantum wire system. This nanostructure is fabricated in a high quality GaAs/AlGaAs parallel double quantum well heterostructure. Using a unique flip chip technique to align top and bottom split gates to form low-dimensional constrictions in each of the independently contacted quantum wells we explicitly control the subband occupation of the individual wires. In addition to the expected two-dimensional (2D)-2D tunneling results, we have found additional tunneling features that are related to the one-dimensional quantum wires.

More Details

Resonant-phonon-assisted THz quantum cascade lasers with metal-metal waveguides

Proposed for publication in Semiconductor Science and Technology.

Reno, John L.

We report our development of terahertz (THz) quantum-cascade lasers (QCLs) based on two novel features. First, the depopulation of the lower radiative level is achieved through resonant longitudinal optical (LO-)phonon scattering. This depopulation mechanism is robust at high temperatures and high injection levels. In contrast to infrared QCLs that also use LO-phonon scattering for depopulation, in our THz lasers the selectivity of the depopulation scattering is achieved through a combination of resonant tunneling and LO-phonon scattering, hence the term resonant phonon. This resonant-phonon scheme allows a highly selective depopulation of the lower radiative level with a sub-picosecond lifetime, while maintaining a relatively long upper level lifetime (>5 ps) that is due to upper-to-ground-state scattering. The second feature of our lasers is that mode confinement is achieved by using a novel double-sided metal-metal waveguide, which yields an essentially unity mode confinement factor and therefore a low total cavity loss at THz frequencies. Based on these two unique features, we have achieved some record performance, including, but not limited to, the highest pulsed operating temperature of 137 K, the highest continuous-wave operating temperature of 97 K, and the longest wavelength of 141 {micro}m (corresponding to 2.1 THz) without the assistance of a magnetic field.

More Details

Coupled quantum wires as a detector of many-body states below the last conductance plateau

Proposed for publication in Semiconductor Science and Technology.

Lilly, Michael; Reno, John L.; Simmons, Jerry A.

We demonstrate the presence of a resonant interaction between a pair of coupled quantum wires, which are realized in the ultra-high mobility two-dimensional electron gas of a GaAs/AlGaAs quantum well. Measuring the conductance of one wire, as the width of the other is varied, we observe a resonant peak in its conductance that is correlated with the point at which the swept wire pinches off. We discuss this behavior in terms of recent theoretical predictions concerning local spin-moment formation in quantum wires.

More Details

Binary superlattice quantum-well infrared photodetectors for long-wavelength broadband detection

Proposed for publication in Applied Physics Letters.

Reno, John L.

We have adopted a binary superlattice structure for long-wavelength broadband detection. In this superlattice, the basis contains two unequal wells, with which more energy states are created for broadband absorption. At the same time, responsivity is more uniform within the detection band because of mixing of wave functions from the two wells. This uniform line shape is particularly suitable for spectroscopy applications. The detector is designed to cover the entire 8-14 {micro}m long-wavelength atmospheric window. The observed spectral widths are 5.2 and 5.6 {micro}m for two nominally identical wafers. The photoresponse spectra from both wafers are nearly unchanged over a wide range of operating bias and temperature. The background-limited temperature is 50 K at 2 V bias for F/1.2 optics.

More Details

Voltage tunable two-color infrared detection using semiconductor superlattices

Proposed for publication in Applied Physics Letters.

Reno, John L.

We demonstrate a voltage tunable two-color quantum-well infrared photodetector (QWIP) that consists of multiple periods of two distinct AlGaAs/GaAs superlattices separated by AlGaAs blocking barriers on one side and heavily doped GaAs layers on the other side. The detection peak switches from 9.5 {micro}m under large positive bias to 6 {micro}m under negative bias. The background-limited temperature is 55 K for 9.5 {micro}m detection and 80 K for 6 {micro}m detection. We also demonstrate that the corrugated-QWIP geometry is suitable for coupling normally incident light into the detector.

More Details

Novel many-body transport phenomenon in coupled quantum wires

Lilly, Michael; Reno, John L.; Simmons, Jerry A.

We demonstrate the presence of a resonant interaction between a pair of coupled quantum wires, which are formed in the ultrahigh mobility two-dimensional electron gas of a GaAs/AlGaAs quantum well. The coupled-wire system is realized by an extension of the split-gate technique, in which bias voltages are applied to Schottky gates on the semiconductor surface, to vary the width of the two quantum wires, as well as the strength of the coupling between them. The key observation of interest here is one in which the gate voltages used to define one of the wires are first fixed, after which the conductance of this wire is measured as the gate voltage used to form the other wire is swept. Over the range of gate voltage where the swept wire pinches off, we observe a resonant peak in the conductance of the fixed wire that is correlated precisely to this pinchoff condition. In this paper, we present new results on the current- and temperature-dependence of this conductance resonance, which we suggest is related to the formation of a local moment in the swept wire as its conductance is reduced below 2e{sup 2}/h.

More Details

Terahertz quantum-cascade laser operating up to 137 K

Proposed for publication in Applied Physics Letters.

Reno, John L.

We report operation of a terahertz quantum-cascade laser at 3.8 THz ({lambda} {approx} 79 {micro}m) up to a heat-sink temperature of 137 K. A resonant phonon depopulation design was used with a low-loss metal-metal waveguide, which provided a confinement factor of nearly unity. A threshold current density of 625 A/cm{sup 2} was obtained in pulsed mode at 5 K. Devices fabricated using a conventional semi-insulating surface-plasmon waveguide lased up to 92 K with a threshold current density of 670 A/cm{sup 2} at 5 K.

More Details

In-plane magneto-plasmons in grating gated double quantum well field effect transistors

Simmons, Jerry A.; Wanke, Michael C.; Lilly, Michael; Reno, John L.

Coupled double quantum well field-effect transistors with a grating gate exhibit a terahertz ({approx}600 GHz) photoconductive response that resonates with standing two dimensional plasma oscillations under the gate and may be the basis for developing a fast, tunable terahertz detector. The application of a precisely aligned in-plane magnetic field produces no detectable change in the device DC conductance but produces a dramatic inversion, growth of the terahertz photoconductive response and frequency shift of the standing plasmon resonances. The frequency shift can be described by a significant mass increase produced by the in-plane field. The mass increase is substantially larger than that calculated from a single well and we presume that a proper treatment of the coupled double quantum well may resolve this discrepancy.

More Details

GaAs MOEMS Technology

Spahn, Olga B.; Fuller, Charles T.; Bauer, Thomas; Sullivan, Charles T.; Grossetete, Grant; Cich, Michael J.; Tigges, Chris P.; Reno, John L.; Peake, Gregory M.; Klem, John F.

Many MEMS-based components require optical monitoring techniques using optoelectronic devices for converting mechanical position information into useful electronic signals. While the constituent piece-parts of such hybrid opto-MEMS components can be separately optimized, the resulting component performance, size, ruggedness and cost are substantially compromised due to assembly and packaging limitations. GaAs MOEMS offers the possibility of monolithically integrating high-performance optoelectronics with simple mechanical structures built in very low-stress epitaxial layers with a resulting component performance determined only by GaAs microfabrication technology limitations. GaAs MOEMS implicitly integrates the capability for radiation-hardened optical communications into the MEMS sensor or actuator component, a vital step towards rugged integrated autonomous microsystems that sense, act, and communicate. This project establishes a new foundational technology that monolithically combines GaAs optoelectronics with simple mechanics. Critical process issues addressed include selectivity, electrochemical characteristics, and anisotropy of the release chemistry, and post-release drying and coating processes. Several types of devices incorporating this novel technology are demonstrated.

More Details

Analysis of transport and thermal properties of THz quantum cascade lasers

Proposed for publication in Applied Physics Letters.

Reno, John L.

We present a self-consistent modeling of a 3.4-THz intersubband laser device. An ensemble Monte Carlo simulation, including both carrier-carrier and carrier-phonon scattering, is used to predict current density, population inversion, gain, and electron temperature. However, these two scattering mechanisms alone appear to be insufficient to explain the observed current density. In addition, the insufficient scattering yields a gain that is slightly higher than inferred from experiments. This suggests the presence of a non-negligible scattering mechanism which is unaccounted for in the present calculations.

More Details

Final Report on LDRD Project: Development of Quantum Tunneling Transistors for Practical Circuit Applications

Simmons, Jerry A.; Lyo, Sungkwun K.; Baca, Wes E.; Reno, John L.; Lilly, Michael; Wendt, Joel R.; Wanke, Michael C.

The goal of this LDRD was to engineer further improvements in a novel electron tunneling device, the double electron layer tunneling transistor (DELTT). The DELTT is a three terminal quantum device, which does not require lateral depletion or lateral confinement, but rather is entirely planar in configuration. The DELTT's operation is based on 2D-2D tunneling between two parallel 2D electron layers in a semiconductor double quantum well heterostructure. The only critical dimensions reside in the growth direction, thus taking full advantage of the single atomic layer resolution of existing semiconductor growth techniques such as molecular beam epitaxy. Despite these advances, the original DELTT design suffered from a number of performance short comings that would need to be overcome for practical applications. These included (i)a peak voltage too low ({approx}20 mV) to interface with conventional electronics and to be robust against environmental noise, (ii) a low peak current density, (iii) a relatively weak dependence of the peak voltage on applied gate voltage, and (iv) an operating temperature that, while fairly high, remained below room temperature. In this LDRD we designed and demonstrated an advanced resonant tunneling transistor that incorporates structural elements both of the DELTT and of conventional double barrier resonant tunneling diodes (RTDs). Specifically, the device is similar to the DELTT in that it is based on 2D-2D tunneling and is controlled by a surface gate, yet is also similar to the RTD in that it has a double barrier structure and a third collector region. Indeed, the device may be thought of either as an RTD with a gate-controlled, fully 2D emitter, or alternatively, as a ''3-layer DELTT,'' the name we have chosen for the device. This new resonant tunneling transistor retains the original DELTT advantages of a planar geometry and sharp 2D-2D tunneling characteristics, yet also overcomes the performance shortcomings of the original DELTT design. In particular, it exhibits the high peak voltages and current densities associated with conventional RTDs, allows sensitive control of the peak voltage by the control gate, and operates nearly at room temperature. Finally, we note under this LDRD we also investigated the use of three layer DELTT structures as long wavelength (Terahertz) detectors using photon-assisted tunneling. We have recently observed a narrowband (resonant) tunable photoresponse in related structures consisting of grating-gated double quantum wells, and report on that work here as well.

More Details

Double Barrier Resonant Tunneling Transistor with a Fully Two Dimensional Emitter

Science Magazine

Simmons, Jerry A.; Reno, John L.; Baca, Wes E.; Blount, Mark A.; Hietala, Vincent M.; Jones, Eric D.

A novel planar resonant tunneling transistor is demonstrated. The growth structure is similar to that of a double-barrier resonant tunneling diode (RTD), except for a fully two-dimensional (2D) emitter formed by a quantum well. Current is fed laterally into the emitter, and the 2D--2D resonant tunneling current is controlled by a surface gate. This unique device structure achieves figures-of-merit, i.e. peak current densities and peak voltages, approaching that of state-of-the-art RTDs. Most importantly, sensitive control of the peak current and voltage is achieved by gating of the emitter quantum well subband energy. This quantum tunneling transistor shows exceptional promise for ultra-high speed and multifunctional operation at room temperature.

More Details

Magnetoconductance of Independently Tunable Tunnel-Coupled Double Quantum Wires

Physica E

Blount, Mark A.; Simmons, Jerry A.; Lyo, Sungkwun K.; Wendt, Joel R.; Reno, John L.

The authors report on their recent experimental studies of vertically-coupled quantum point contacts subject to in-plane magnetic fields. Using a novel flip-chip technique, mutually aligned split gates on both sides of a sub micron thick double quantum well heterostructure define a closely-coupled pair of ballistic one-dimensional (1D) constrictions. They observe quantized conductance steps due to each quantum well and demonstrate independent control of each ID constriction width. In addition, a novel magnetoconductance feature at {approximately}6 T is observed when a magnetic field is applied perpendicular to both the current and growth directions. This conductance dip is observed only when 1D subbands are populated in both the top and bottom constrictions. This data is consistent with a counting model whereby the number of subbands crossing the Fermi level changes with field due to the formation of an anticrossing in each pair of 1D subbands.

More Details

Effect of the Nuclear Hyperfine Field on the 2D Electron Conductivity in the Quantum Hall Regime

JETP Letters

Simmons, Jerry A.; Reno, John L.

The effect of the nuclear hyperfine interaction on the dc conductivity of 2D electrons under quantum Hall effect conditions at filling factor v= 1 is observed for the first time. The local hyperfine field enhanced by dynamic nuclear polarization is monitored via the Overhauser shift of the 2D conduction electron spin resonance in AlGaAs/GaAs multiquantum-well samples. The experimentally observed change in the dc conductivity resulting from dynamic nuclear polarization is in agreement with a thermal activation model incorporating the Zeeman energy change due to the hyperfine interaction. The relaxation decay time of the dc conductivity is, within experimental error, the same as the relaxation time of the nuclear spin polarization determined from the Overhauser shift. These findings unequivocally establish the nuclear spin origins of the observed conductivity change.

More Details

A new type of magnetoresistance oscillations: Interaction of a two-dimensional electron gas with leaky interface phonons

Physical Review Letters

Simmons, Jerry A.; Reno, John L.

The authors report a new type of oscillations in magnetoresistance observed in high-mobility two-dimensional electron gas (2DEG), in GaAs-AIGaAs heterostructures. Being periodic in 1/B these oscillations appear in weak magnetic field (B < 0.3 T) and only in a narrow temperature range (3 K < T < 7 K). Remarkably, these oscillations can be understood in terms of magneto-phonon resonance originating from the interaction of 2DEG and leaky interface-acoustic phonon modes. The existence of such modes on the GaAs:AIGaAs interface is demonstrated theoretically and their velocities are calculated. It is shown that the electron-phonon scattering matrix element exhibits a peak for the phonons carrying momentum q = 2k{sub F} (k{sub F} is the Fermi wave-vector of 2DEG).

More Details

Optical properties of spontaneous lateral composition modulations in AlAs/InAs short-period superlattices

Applied Physics Letters

Jones, Eric D.; Reno, John L.; Lee, Stephen R.; Follstaedt, David M.

The effect of lateral composition modulation, spontaneously generated during the epitaxial growth of a AlAs/InAs short-period superlattice, on the electronic band structure is investigated using photo-transmission and photoluminescence spectroscopy. Compared with uniform layers of similar average composition, the presence of the composition modulation considerably reduces the band gap energy and produces strongly polarized emission and absorption spectra. The authors demonstrate that the dominant polarization can selectively be aligned along the [{bar 1}10] or [010] crystallographic directions. In compressively strained samples, the use of (001) InP substrates slightly miscut toward [111]A or [101] resulted in modulation directions along [110] or [100], respectively, and dominant polarizations along a direction orthogonal to the respective composition modulation. Band gap reduction as high as 350 meV and 310 meV are obtained for samples with composition modulation along [110] and [100], respectively. Polarization ratios up to 26 are observed in transmission spectra.

More Details

Effect of surface steps on the microstructure of lateral composition modulation

Applied Physics Letters

Follstaedt, David M.; Reno, John L.; Jones, Eric D.; Lee, Stephen R.

Growth of InAs/AlAs short-period superlattices on appropriately miscut (001) InP substrates is shown to alter the microstructure of composition modulation from a 2D organization of short compositionally enriched wires to a single dominant modulation direction and wire lengths up to {approximately}1 {micro}m. The effects of miscut are interpreted in terms of surface step orientation and character. The material is strongly modulated and exhibits intense optical emission. The 1D modulations appear potentially useful for new devices that take advantage of the preferred direction formed in the growth plane.

More Details

Crossing behavior of the singlet and triplet State of the negatively charged magneto-exciton in a GaAs/AlGaAs quantum well

Physical Review B

Simmons, Jerry A.; Reno, John L.

Polarized magneto-photoluminescence (MPL) measurements on a high mobility {delta}-doped GaAs/AlGaAs single quantum well from 0--60 T at temperatures between 0.37--2.1 K are reported. In addition to the neutral heavy hole magneto-exciton (X{sup 0}), the singlet (X {sub s}{sup {minus}}) and triplet (X {sub t}{sup {minus}}) states of the negatively charged magneto-exciton are observed in both polarizations. The energy dispersive and time-resolved MPL data suggest that their development is fundamentally related to the formation of the neutral magneto-exciton. At a magnetic field of 40 T the singlet and the triplet states cross as a result of the role played by the higher Landau levels and higher energy subbands in their energetic evolution, confirming theoretical predictions. The authors also observed the formation of two higher energy peaks. One of them is completely right circularly polarized and its appearance can be considered a result of the electron-hole exchange interaction enhancement with an associated electron g-factor of 3.7 times the bulk value. The other peak completely dominates the MPL spectrum at fields around 30 T. Its behavior with magnetic field and temperature indicates that it may be related to previous anomalies observed in the integer and fractional quantum Hall regimes.

More Details

The nature and origin of lateral composition modulations in short-period strained-layer superlattices

Jones, Eric D.; Follstaedt, David M.; Lee, Stephen R.; Reno, John L.

The nature and origin of lateral composition modulations in (AlAs){sub m}(InAs){sub n} SPSs grown by MBE on InP substrates have been investigated by XRD, AFM, and TEM. Strong modulations were observed for growth temperatures between {approx} 540 and 560 C. The maximum strength of modulations was found for SPS samples with InAs mole fraction x (=n/(n+m)) close to {approx} 0.50 and when n {approx} m {approx} 2. The modulations were suppressed at both high and low values of x. For x >0.52 (global compression) the modulations were along the <100> directions in the (001) growth plane. For x < 0.52 (global tension) the modulations were along the two <310> directions rotated {approx} {+-} 27{degree} from [110] in the growth plane. The remarkably constant wavelength of the modulations, between {approx} 20--30 nm, and the different modulation directions observed, suggest that the origin of the modulations is due to surface roughening associated with the high misfit between the individual SPS layers and the InP substrate. Highly uniform unidirectional modulations have been grown, by control of the InAs mole fraction and growth on suitably offcut substrates, which show great promise for application in device structures.

More Details

Reciprocal-space and real-space analyses of compositional modulation in InAs/AlAs short-period superlattices

Follstaedt, David M.; Lee, Stephen R.; Reno, John L.; Jones, Eric D.

The microstructure of lateral composition modulation in InAs/AlAs superlattices grown by MBE on InP is examined. The use of x-ray diffraction, TEM, AFM, and STEM to characterize the modulations is discussed. Combining the information from these techniques gives increased insight into the phenomenon and how to manipulate it. Diffraction measures the intensity of modulation and its wavelength, and is used to identify growth conditions giving strong modulation. The TEM and STEM analyses indicate that local compositions are modulated by as much as 0.38 InAs mole fraction. Plan-view images show that modulated structures consists of short ({approx_lt}0.2 {micro}m) In-rich wires with a 2D organization in a (001) growth plane. However, growth on miscut substrates can produce a single modulation along the miscut direction with much longer wires ({approx_gt}0.4 {micro}m), as desired for potential applications. Photoluminescence studies demonstrate that the modulation has large effects on the bandgap energy of the superlattice.

More Details

Magnetic anticrossing of 1D subbands in ballistic double quantum wires

Superlattices and Microstructures

Blount, M.A.; Simmons, Jerry A.; Moon, J.S.; Lyo, Sungkwun K.; Wendt, Joel R.; Reno, John L.

We study the low-temperature in-plane magnetoconductance of vertically coupled double quantum wires. Using a novel flip-chip technique, the wires are defined by two pairs of mutually aligned split gates on opposite sides of a≤1 micron thick AlGaAs/GaAs double quantum well heterostructure. We observe quantized conductance steps due to each quantum well and demonstrate independent control of each 1D wire. A broad dip in the magnetoconductance at approximately 6 T is observed when a magnetic field is applied perpendicular to both the current and growth directions. This conductance dip is observed only when 1D subbands are populated in both the top and bottom constrictions. This data is consistent with a counting model whereby the number of subbands crossing the Fermi level changes with field due to the formation of an anticrossing in each pair of 1D subbands.

More Details

Use of high index substrates to enable dislocation filtering in large mismatch systems

Reno, John L.

We report results in three areas of research relevant to the fabrication of a wide range of optoelectronic devices: The development of a new x-ray diffraction technique that can be used to rapidly determine the optimal period of a strained layer superlattice to maximize the dislocation filtering; The optimal MBE growth parameters for the growth of CdTe on GaAs(211); The determination of the relative efficiency of dislocation filtering in the (211) and (100) orientations; and The surface quality of InSb grown by MOCVD on InSb substrates is affected by the misorientation of the substrate.

More Details

Growth and optical characterization of ZnMnTe grown by molecular beam epitaxy

Reno, John L.

We have successfully grown ZnMnTe alloys by molecular beam epitaxy using GaAs as a substrate. Bulk MnTe has the wurtzite crystal structure but the structural phase of the material was confirmed to be zinc-blende by standard {theta}-2{theta} x-ray diffraction techniques. The composition was also determined using x-ray diffraction techniques. Manganese concentration was also estimated from magnetization measurements taken as a function of temperature. Magnetoluminescence studies were performed at 1.4K on the acceptor-bound exciton in the semimagnetic semiconductor ZnMnTe alloys. As expected, the photoluminescence peak energy decreased with increasing magnetic field.

More Details

Growth and optical characterization of Zn{sub 1-x}Mn{sub x}Te grown by molecular beam epitaxy

Reno, John L.

We have grown Zn{sub 1-x}Mn{sub x}Te alloys by molecular beam epitaxy and characterized them using x-ray diffraction and low temperature magnetoluminescence. Zn{sub 1-x}Mn{sub x}Te is a dilute magnetic semiconductor (DMS) whose bandgap ranges from the green through the blue part of the spectrum and is therefore of interest for blue LEDs.

More Details

Optical characterization of CdZnTe/CdTe strained quantum wells

Reno, John L.

Strained layer structures have received a great deal of attention due both to their possible application in electronic devices and their intrinsic interest. The study of strained layer quantum wells grown using lattice mismatched materials has been widely developed for III-V semiconductors. Strained layer quantum wells grown using II-VI materials have not been studied nearly so much as those from III-V, but they are a rapidly growing field of semiconductor research. The wide gap II-VI materials are of interest because they are generally direct gap materials. This makes them attractive for optoelectronic devices. The majority of the work on strained layer structures in the wide gap tellurium based materials has focused in two areas. The first is the inclusion of Mn to produce dilute magnetic semiconductors (DMS) strained layers and superlattices. The other area is CdTe/ZnTe quantum wells and superlattices. Some related work has been done with CdZnTe/ZnTe structures. For the CdZnTe/CdTe very little work has been done and the majority of that used very small amounts of Zn. In this paper we will present the growth and optical characterization of Cd{sub 1-x}Zn{sub x}Te/CdTe strained single quantum wells (SSQW) where the Zn concentration ranges from about 10 to 50%. 10 refs., 3 figs.

More Details
Results 301–343 of 343
Results 301–343 of 343