Publications

Results 251–300 of 343

Search results

Jump to search filters

LDRD final report on Bloch Oscillations in two-dimensional nanostructure arrays for high frequency applications

Pan, Wei; Lyo, Sungkwun K.; Reno, John L.; Wendt, Joel R.; Barton, Daniel L.

We have investigated the physics of Bloch oscillations (BO) of electrons, engineered in high mobility quantum wells patterned into lateral periodic arrays of nanostructures, i.e. two-dimensional (2D) quantum dot superlattices (QDSLs). A BO occurs when an electron moves out of the Brillouin zone (BZ) in response to a DC electric field, passing back into the BZ on the opposite side. This results in quantum oscillations of the electron--i.e., a high frequency AC current in response to a DC voltage. Thus, engineering a BO will yield continuously electrically tunable high-frequency sources (and detectors) for sensor applications, and be a physics tour-de-force. More than a decade ago, Bloch oscillation (BO) was observed in a quantum well superlattice (QWSL) in short-pulse optical experiments. However, its potential as electrically biased high frequency source and detector so far has not been realized. This is partially due to fast damping of BO in QWSLs. In this project, we have investigated the possibility of improving the stability of BO by fabricating lateral superlattices of periodic coupled nanostructures, such as metal grid, quantum (anti)dots arrays, in high quality GaAs/Al{sub x}Ga{sub 1-x}As heterostructures. In these nanostructures, the lateral quantum confinement has been shown theoretically to suppress the optical-phonon scattering, believed to be the main mechanism for fast damping of BO in QWSLs. Over the last three years, we have made great progress toward demonstrating Bloch oscillations in QDSLs. In the first two years of this project, we studied the negative differential conductance and the Bloch radiation induced edge-magnetoplasmon resonance. Recently, in collaboration with Prof. Kono's group at Rice University, we investigated the time-domain THz magneto-spectroscopy measurements in QDSLs and two-dimensional electron systems. A surprising DC electrical field induced THz phase flip was observed. More measurements are planned to investigate this phenomenon. In addition to their potential device applications, periodic arrays of nanostructures have also exhibited interesting quantum phenomena, such as a possible transition from a quantum Hall ferromagnetic state to a quantum Hall spin glass state. It is our belief that this project has generated and will continue to make important impacts in basic science as well as in novel solid-state, high frequency electronic device applications.

More Details

Towards Coulomb drag in vertically coupled quantum wires with independent contacts

Physica E: Low-Dimensional Systems and Nanostructures

Laroche, D.; Bielejec, E.S.; Reno, John L.; Gervais, G.; Lilly, M.P.

We report the details of design and fabrication of independently contacted, vertically coupled quantum wires using the epoxy-bond-and-stop-etch (EBASE) technique. These nanostructures are fabricated in high quality GaAs/AlGaAs parallel double quantum well heterostructures and are intended for Coulomb drag measurements of quantum wires. They will allow us to explore Coulomb drag in one-dimensional structures in a regime of small interlayer separation where the drag signal is expected to be stronger and less affected by phonon drag. © 2007 Elsevier B.V. All rights reserved.

More Details

Electronically tunable plasmonic grating-gate terahertz detectors

Proceedings of SPIE - The International Society for Optical Engineering

Shaner, Eric A.; Grine, A.D.; Lyo, Sungkwun K.; Reno, John L.; Wanke, M.C.; Allen, S.J.

Split grating-gate field effect transistors (FETs) detectors made from high mobility quantum well two-dimensional electron gas material have been shown to exhibit greatly improved tunable resonant photoresponse compared to single grating-gate detectors due to the formation of a 'diode-like' element by the split-gate structure. These detectors are relatively large for FETs (1mm × 1mm area or larger) to match typical focused THz beam spot sizes. In the case where the focused THz spot size is smaller than the detector area, we have found evidence, through positional scanning of the detector element, that only a small portion of the detector is active. To further investigate this situation, detectors with the same channel width (1mm), but various channel lengths, were fabricated and tested. The results indicate that indeed, only a small portion of the split grating gated FET is active. This finding opens up the possibility for further enhancement of detector sensitivity by increasing the active area.

More Details

Investigations of the non-linear transient response of quantum point contacts using pulsed excitation with sub-nanosecond time resolution

Physica E: Low-Dimensional Systems and Nanostructures

Naser, B.; Ferry, D.K.; Heeren, J.; Reno, John L.; Bird, J.P.

We review recent work where we have investigated the non-linear transient response of quantum point contacts (QPCs) using pulsed excitation with sub-nanosecond time resolution. The transient response of these devices is shown to be dominated by a large parallel capacitance that is independent of the QPC conductance and pulse amplitude. These characteristics lead us to suggest that the capacitance is associated with charging of the two-dimensional reservoirs that source and sink current to the QPC. Our investigations also show that the transient conductance of the QPC must develop very quickly as the voltage pulse is applied, at least on a time scale shorter than the fastest rise time (2 ns) used in the experiments. We also find the existence of a characteristic fixed point in the non-linear conductance, at which its value is bias independent. The fixed point appears to correspond to the situation where the unbiased QPC is almost depopulated and can be accounted for by considering the unidirectional population of QPC subbands by the voltage bias. To discuss the behavior of the transient conductance away from the fixed point, we find that it should be necessary to consider the influence of the applied bias on the QPC profile and electron-phonon scattering. © 2007 Elsevier B.V. All rights reserved.

More Details

Terahertz detectors for long wavelength multi-spectral imaging

Shaner, Eric A.; Lyo, Sungkwun K.; Reno, John L.; Wanke, Michael C.

The purpose of this work was to develop a wavelength tunable detector for Terahertz spectroscopy and imaging. Our approach was to utilize plasmons in the channel of a specially designed field-effect transistor called the grating-gate detector. Grating-gate detectors exhibit narrow-linewidth, broad spectral tunability through application of a gate bias, and no angular dependence in their photoresponse. As such, if suitable sensitivity can be attained, they are viable candidates for Terahertz multi-spectral focal plane arrays. When this work began, grating-gate gate detectors, while having many promising characteristics, had a noise-equivalent power (NEP) of only 10{sup -5} W/{radical}Hz. Over the duration of this project, we have obtained a true NEP of 10{sup -8} W/{radical}Hz and a scaled NEP of 10{sup -9}W/{radical}Hz. The ultimate goal for these detectors is to reach a NEP in the 10{sup -9{yields}-10}W/{radical}Hz range; we have not yet seen a roadblock to continued improvement.

More Details

Operation of a monolithic planar schottky receiver using a THz quantum cascade laser

IRMMW-THz2007 - Conference Digest of the Joint 32nd International Conference on Infrared and Millimetre Waves, and 15th International Conference on Terahertz Electronics

Wanke, Michael C.; Lee, Mark; Grine, Albert D.; Reno, John L.; Siegel, Peter H.; Dengler, Robert J.

This paper presents heterodyne mixer measurements at 2.9 THz using quantum cascade lasers (QCLs) as sources. The linewidth of the laser was explored by biasing it to run in dual mode operation and observing the linewidth of the beat note. In addition the frequency of the QCL is determined by beating it against a deuterated methanol line from a molecular gas laser.

More Details

Microwave to millimeter-wave electrodynamic response and applications of semiconductor nanostructures: LDRD project 67025 final report

Shaner, Eric A.; Highstrete, Clark; Reno, John L.; Wanke, Michael C.

Solid-state lighting (SSL) technologies, based on semiconductor light emitting devices, have the potential to reduce worldwide electricity consumption by more than 10%, which could significantly reduce U.S. dependence on imported energy and improve energy security. The III-nitride (AlGaInN) materials system forms the foundation for white SSL and could cover a wide spectral range from the deep UV to the infrared. For this LDRD program, we have investigated the synthesis of single-crystalline III-nitride nanowires and heterostructure nanowires, which may possess unique optoelectronic properties. These novel structures could ultimately lead to the development of novel and highly efficient SSL nanodevice applications. GaN and III-nitride core-shell heterostructure nanowires were successfully synthesized by metal organic chemical vapor deposition (MOCVD) on two-inch wafer substrates. The effect of process conditions on nanowire growth was investigated, and characterization of the structural, optical, and electrical properties of the nanowires was also performed.

More Details

Tunable THz detector based on a grating gated field-effect transistor

Proceedings of SPIE - The International Society for Optical Engineering

Shaner, Eric A.; Lee, Mark; Wanke, M.C.; Grine, A.D.; Reno, John L.; Allen, S.J.

A split-grating-gate detector design has been implemented in an effort to combine the tunabiliry of the basic gratinggate detector with the high responsivity observed in these detectors when approaching the pinchoff regime. The redesign of the gates by itself offers several orders of magnitude improvement in resonant responsivity. Further improvements are gained by placing the detector element on a thermally isolating membrane in order to increase the effects of lattice heating on the device response.

More Details

LDRD final report on quantum computing using interacting semiconductor quantum wires

Bielejec, Edward S.; Lilly, Michael; Seamons, John; Dunn, Roberto G.; Lyo, Sungkwun K.; Reno, John L.; Stephenson, Larry L.; Simmons, Jerry A.

For several years now quantum computing has been viewed as a new paradigm for certain computing applications. Of particular importance to this burgeoning field is the development of an algorithm for factoring large numbers which obviously has deep implications for cryptography and national security. Implementation of these theoretical ideas faces extraordinary challenges in preparing and manipulating quantum states. The quantum transport group at Sandia has demonstrated world-leading, unique double quantum wires devices where we have unprecedented control over the coupling strength, number of 1 D channels, overlap and interaction strength in this nanoelectronic system. In this project, we study 1D-1D tunneling with the ultimate aim of preparing and detecting quantum states of the coupled wires. In a region of strong tunneling, electrons can coherently oscillate from one wire to the other. By controlling the velocity of the electrons, length of the coupling region and tunneling strength we will attempt to observe tunneling oscillations. This first step is critical for further development double quantum wires into the basic building block for a quantum computer, and indeed for other coupled nanoelectronic devices that will rely on coherent transport. If successful, this project will have important implications for nanoelectronics, quantum computing and information technology.

More Details

1D-1D tunneling between vertically coupled GaAs/AlGaAs quantum wires

AIP Conference Proceedings

Bielejec, E.; Seamons, John; Lilly, M.P.; Reno, John L.

We report low-dimensional transport and tunneling in an independently contacted vertically coupled quantum wire system, with a 7.5 nm barrier between the wires. The derivative of the linear conductance shows evidence for both single wire occupation and coupling between the wires. This provides a map of the subband occupation that illustrates the control that we have over the vertically coupled double quantum wires. Preliminary tunneling results indicate a sharp 1D-1D peak in conjunction with a broad 2D-2D background signal. This 1D-1D peak is sensitively dependent on the top and bottom split gate voltage. © 2005 American Institute of Physics.

More Details

Weak localization of dilute 2D electrons in undoped GaAs heterostructures

AIP Conference Proceedings

Lilly, M.P.; Bielejec, E.; Seamons, John; Reno, John L.

The temperature dependence of the resistivity and magnetoresistance of dilute 2D electrons are reported. The temperature dependence of the resistivity can be qualitatively described through phonon and ionized impurity scattering. While the temperature dependence indicates no ln(T) increase in the resistance, a sharp negative magnetoresistance feature is observed at small magnetic fields. This is shown to arise from weak localization. At very low density, we believe weak localization is still present, but cannot separate it from other effects that cause magnetoresistance in the semi-classical regime. © 2005 American Institute of Physics.

More Details

Ballistic to diffuse crossover in long quantum wires

AIP Conference Proceedings

Seamons, John; Bielejec, E.; Lilly, M.P.; Reno, John L.; Du, R.R.

We report a study on the uniformity of long quantum wires in the crossover from ballistic to diffuse transport with lengths ranging from 1 μm to 20 μm. For the 1 μm wire we measure 15 plateaus quantized at integer values of 2e2/h. With increasing length we observe plateaus at conductance values suppressed below the quantized values. With nonlinear fitting to the magnetoresistances we obtain an effective width for the quantum wires. As we find no systematic variation of the effective width as a function of sublevel index for the various length wires, we conclude that we have uniform long single quantum wires up to 20 μm. © 2005 American Institute of Physics.

More Details

Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer

Applied Physics Letters

Gao, J.R.; Hovenier, J.N.; Yang, Z.Q.; Baselmans, J.J.A.; Baryshev, A.; Hajenius, M.; Klapwijk, T.M.; Adam, A.J.L.; Klaassen, T.O.; Williams, B.S.; Kumar, S.; Hu, Q.; Reno, John L.

We report the first demonstration of an all solid-state heterodyne receiver that can be used for high-resolution spectroscopy above 2 THz suitable for space-based observatories. The receiver uses a NbN superconducting hot-electron bolometer as mixer and a quantum cascade laser operating at 2.8 THz as local oscillator. We measure a double sideband receiver noise temperature of 1400 K at 2.8 THz and 4.2 K, and find that the free-running QCL has sufficient power stability for a practical receiver, demonstrating an unprecedented combination of sensitivity and stability. © 2005 American Institute of Physics.

More Details

Single-quantum-well grating-gated terahertz plasmon detectors

Proposed for publication in Applied Physics Letters.

Shaner, Eric A.; Lee, Mark; Wanke, Michael C.; Grine, Albert; Reno, John L.

A grating-gated field-effect transistor fabricated from a single-quantum well in a high-mobility GaAs-AlGaAs heterostructure is shown to function as a continuously electrically tunable photodetector of terahertz radiation via excitation of resonant plasmon modes in the well. Different harmonics of the plasmon wave vector are mapped, showing different branches of the dispersion relation. As a function of temperature, the resonant response magnitude peaks at around 30 K. Both photovoltaic and photoconductive responses have been observed under different incident power and bias conditions.

More Details

Distributed-feedback terahertz quantum-cascade lasers using laterally corrugated metal waveguides

Proposed for publication in Optics Letters.

Reno, John L.

We report the demonstration of distributed-feedback terahertz quantum-cascade lasers based on a first-order grating fabricated via a lateral corrugation in a double-sided metal ridge waveguide. The phase of the facet reflection was precisely set by lithographically defined facets by dry etching. Single-mode emission was observed at low to moderate injection currents, although multimode emission was observed far beyond threshold owing to spatial hole burning. Finite-element simulations were used to calculate the modal and threshold characteristics for these devices, with results in good agreement with experiments.

More Details

Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode

Proposed for publication in Optics Express.

Reno, John L.

We report the demonstration of a terahertz quantum-cascade laser that operates up to 164 K in pulsed mode and 117 K in continuous-wave mode at approximately 3.0 THz. The active region was based on a resonant-phonon depopulation scheme and a metal-metal waveguide was used for modal confinement. Copper to copper thermocompression wafer bonding was used to fabricate the waveguide, which displayed improved thermal properties compared to a previous indium-gold bonding method.

More Details
Results 251–300 of 343
Results 251–300 of 343