Effects of High Dose Rate Ionizing Radiation on Fused Silica and Sapphire Films
IEEE Transactions on Nuclear Science
Abstract not provided.
IEEE Transactions on Nuclear Science
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Transactions on Plasma Science
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
ECS Transactions
The increase in the magnitude of the threshold voltage of a positive-channel metal oxide semiconductor (PMOS) under negative gate biasing (negative bias temperature instability) is attributed to the build-up of charge in the gate insulator. We have studied the charging and discharging of nitrided SiO2 gate insulator field effect transistors and through the use of pseudo-DC and pulsed stressing methods, have extracted, at least, three charging components. These components are (a) the charging of interface states at the semiconductor/insulator boundary, (b) dynamically recoverable positive charging in the bulk' of the insulator, and (c) positive charging in the insulator, which can be eliminated' only by application of a positive electric field across the insulator. It is proposed that the charge elimination' in (c) arises via a charge neutralization process involving electron capture at switching traps, as opposed to de-trapping, and that this can be reversed by the application of a small negative field. © The Electrochemical Society.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in IEEE Electron Device Letters.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Digest of Technical Papers-IEEE International Pulsed Power Conference
Continuum calculations are used to understand the avalanche growth of electrical current in a composite insulator consisting of an air gap and a solid dielectic. The results show that trapped charge can quench the electrical breakdown. The results are compared with phenomena found in dielectric barrier discharge (DBD) devices. © 2011 IEEE.