Ca2+-Doped CeBr3 scintillating material
Transactions of the American Nuclear Society
Abstract not provided.
Transactions of the American Nuclear Society
Abstract not provided.
Physical Chemistry Chemical Physics
TlBr can surpass CZT as the leading semiconductor for γ- A nd X-radiation detection. Unfortunately, the optimum properties of TlBr quickly decay when an operating electrical field is applied. Quantum mechanical studies indicated that if this property degradation comes from the conventional mechanism of ionic migration of vacancies, then an unrealistically high vacancy concentration is required to account for the rapid aging of TlBr seen in experiments. In this work, we have applied large scale molecular dynamics simulations to study the effects of dislocations on ionic migration of TlBr crystals under electrical fields. We found that electrical fields can drive the motion of edge dislocations in both slip and climb directions. These combined motions eject enormous vacancies in the dislocation trail. Both dislocation motion and a high vacancy concentration can account for the rapid aging of the TlBr detectors. These findings suggest that strengthening methods to pin dislocations should be explored to increase the lifetimes of TlBr crystals.
Physical Chemistry Chemical Physics. PCCP
It has been widely believed that crystalline TlBr can surpass CdZnTe to become the leading semiconductor for γ- and X- radiation detection. The major hurdle to this transition is the rapid aging of TlBr under the operating electrical field. Here, while ionic migration of vacancies has been traditionally the root cause for property degradation, quantum mechanical calculations indicated that the vacancy concentration needed to cause the observed aging must be orders of magnitude higher than the usual theoretical estimate. Recent molecular dynamics simulations and X-ray diffract ion experiments have shown that electrical fields can drive the motion of edge dislocations in both slip and climb directions. Furthermore, these combined motions eject a large number of vacancies. Both dislocation mot ion and vacancy ejection can account for the rapid aging of the TlBr detectors. Based on these new discoveries, the present work applies molecular dynamics simulations to “develop” aging-resistant TlBr crystals by inhibiting dislocation motions.
Abstract not provided.
Abstract not provided.
Abstract not provided.
ACS Applied Materials and Interfaces
Because of their extraordinary surface areas and tailorable porosity, metal-organic frameworks (MOFs) have the potential to be excellent sensors of gas-phase analytes. MOFs with open metal sites are particularly attractive for detecting Lewis basic atmospheric analytes, such as water. Here, we demonstrate that thin films of the MOF HKUST-1 can be used to quantitatively determine the relative humidity (RH) of air using a colorimetric approach. HKUST-1 thin films are spin-coated onto rigid or flexible substrates and are shown to quantitatively determine the RH within the range of 0.1-5% RH by either visual observation or a straightforward optical reflectivity measurement. At high humidity (>10% RH), a polymer/MOF bilayer is used to slow the transport of H2O to the MOF film, enabling quantitative determination of RH using time as the distinguishing metric. Finally, the sensor is combined with an inexpensive light-emitting diode light source and Si photodiode detector to demonstrate a quantitative humidity detector for low humidity environments.
Abstract not provided.
Abstract not provided.
TlBr has the properties to become the leading radiation detection semiconductor. It has not yet been deployed due to a short lifetime of only hours to weeks. While the rapid structural deteriorations must come from ionic conduction under operating electrical fields, detailed aging mechanisms have not been understood. As a result, progress to extend lifetime has been limited despite extensive studies in the past. We have developed new atomistic simulation capabilities to enable study of ionic conduction under electrical fields. Our combined simulations and experiments indicate that dislocations in TlBr climb under electrical fields. This climb is the root cause for structural deterioration. Hence, we discovered new strengthening methods to reduce aging. Our new atomistic simulation approach can have broader impact on other Sandia programs including battery research. Our project results in 4 publications, a new invention, new LAMMPS capabilities, solution to mission relevant materials, and numerous presentations.
Abstract not provided.
MRS Advances
TlBr crystals have superior radiation detection properties; however, their properties degrade in the range of hours to weeks when an operating electrical field is applied. To account for this rapid degradation using the widely-accepted vacancy migration mechanism, the vacancy concentration must be orders of magnitude higher than any conventional estimates. The present work has incorporated a new analytical variable charge model in molecular dynamics (MD) simulations to examine the structural changes of materials under electrical fields. Our simulations indicate that dislocations in TlBr move under electrical fields. This discovery can lead to new understanding of TlBr aging mechanisms under external fields.
Journal of Materials Science Research
TlBr is promising for g- and x- radiation detection, but suffers from rapid performance degradation under the operating external electric fields. To enable molecular dynamics (MD) studies of this degradation, we have developed a Stillinger-Weber type of TlBr interatomic potential. During this process, we have also addressed two problems of wider interests. First, the conventional Stillinger-Weber potential format is only applicable for tetrahedral structures (e.g., diamond-cubic, zinc-blende, or wurtzite). Here we have modified the analytical functions of the Stillinger-Weber potential so that it can now be used for other crystal structures. Second, past modifications of interatomic potentials cannot always be applied by a broad community because any new analytical functions of the potential would require corresponding changes in the molecular dynamics codes. Here we have developed a polymorphic potential model that simultaneously incorporates Stillinger-Weber, Tersoff, embedded-atom method, and any variations (i.e., modified functions) of these potentials. As a result, we have implemented this polymorphic model in MD code LAMMPS, and demonstrated that our TlBr potential enables stable MD simulations under external electric fields.
Journal of Physical Chemistry Letters
Metal-organic frameworks (MOFs) are crystalline nanoporous materials comprised of organic electron donors linked to metal ions by strong coordination bonds. Applications such as gas storage and separations are currently receiving considerable attention, but if the unique properties of MOFs could be extended to electronics, magnetics, and photonics, the impact on material science would greatly increase. Recently, we obtained "emergent properties," such as electronic conductivity and energy transfer, by infiltrating MOF pores with "guest" molecules that interact with the framework electronic structure. In this Perspective, we define a path to emergent properties based on the Guest@MOF concept, using zinc-carboxylate and copper-paddlewheel MOFs for illustration. Energy transfer and light harvesting are discussed for zinc carboxylate frameworks infiltrated with triplet-scavenging organometallic compounds and thiophene- and fullerene-infiltrated MOF-177. In addition, we discuss the mechanism of charge transport in TCNQ-infiltrated HKUST-1, the first MOF with electrical conductivity approaching conducting organic polymers. These examples show that guest molecules in MOF pores should be considered not merely as impurities or analytes to be sensed but also as an important aspect of rational design.
Elpasolite scintillators are a large family of halides which includes compounds reported to meet the NA22 program goals of <3% energy resolution at 662 keV1. This work investigated the potential to produce quality elpasolite compounds and alloys of useful sizes at reasonable cost, through systematic experimental and computational investigation of crystal structure and properties across the composition space. Discovery was accelerated by computational methods and models developed previously to efficiently identify cubic members of the elpasolite halides, and to evaluate stability of anion and cation exchange alloys.
Abstract not provided.
Abstract not provided.
The present work addresses the need for solid-state, fast neutron discriminating scintillators that possess higher light yields and faster decay kinetics than existing organic scintillators. These respective attributes are of critical importance for improving the gamma-rejection capabilities and increasing the neutron discrimination performance under high-rate conditions. Two key applications that will benefit from these improvements include large-volume passive detection scenarios as well as active interrogation search for special nuclear materials. Molecular design principles were employed throughout this work, resulting in synthetically tailored materials that possess the targeted scintillation properties.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Chemistry of Materials
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.