Publications

Results 76–100 of 141

Search results

Jump to search filters

The impact of trade costs on rare earth exports : a stochastic frontier estimation approach

Vugrin, Eric; Brady, Patrick V.

The study develops a novel stochastic frontier modeling approach to the gravity equation for rare earth element (REE) trade between China and its trading partners between 2001 and 2009. The novelty lies in differentiating betweenbehind the border' trade costs by China and theimplicit beyond the border costs' of China's trading partners. Results indicate that the significance level of the independent variables change dramatically over the time period. While geographical distance matters for trade flows in both periods, the effect of income on trade flows is significantly attenuated, possibly capturing the negative effects of financial crises in the developed world. Second, the total export losses due tobehind the border' trade costs almost tripled over the time period. Finally, looking atimplicit beyond the border' trade costs, results show China gaining in some markets, although it is likely that some countries are substituting away from Chinese REE exports.

More Details

A resilience assessment framework for infrastructure and economic systems: Quantitative and qualitative resilience analysis of petrochemical supply chains to a hurricane

Process Safety Progress

Vugrin, Eric; Warren, Drake E.; Ehlen, Mark

In recent years, the nation has recognized that critical infrastructure protection should consider not only the prevention of disruptive events but also the processes that infrastructure systems undergo to maintain functionality following disruptions. This more comprehensive approach has been termed critical infrastructure resilience. Given the occurrence of a particular disruptive event, the resilience of a system to that event is the system's ability to reduce efficiently both the magnitude and duration of the deviation from targeted system performance levels. Under the direction of the U. S. Department of Homeland Security's Science and Technology Directorate, Sandia National Laboratories has developed a comprehensive resilience assessment framework for evaluating the resilience of infrastructure and economic systems. The framework includes a quantitative methodology that measures resilience costs that result from a disruption to infrastructure function. The framework also includes a qualitative analysis methodology that assesses system characteristics affecting resilience to provide insight and direction for potential improvements. This article describes the resilience assessment framework and demonstrates the utility of the assessment framework through application to two hypothetical scenarios involving the disruption of a petrochemical supply chain by hurricanes. © 2011 American Institute of Chemical Engineers (AIChE).

More Details

A resilience assessment framework for infrastructure and economic systems: Quantitative and qualitative resilience analysis of petrochemical supply chains to a hurricane

Process Safety Progress

Vugrin, Eric; Warren, Drake E.; Ehlen, Mark

In recent years, the nation has recognized that critical infrastructure protection should consider not only the prevention of disruptive events but also the processes that infrastructure systems undergo to maintain functionality following disruptions. This more comprehensive approach has been termed critical infrastructure resilience. Given the occurrence of a particular disruptive event, the resilience of a system to that event is the system's ability to reduce efficiently both the magnitude and duration of the deviation from targeted system performance levels. Under the direction of the U. S. Department of Homeland Security's Science and Technology Directorate, Sandia National Laboratories has developed a comprehensive resilience assessment framework for evaluating the resilience of infrastructure and economic systems. The framework includes a quantitative methodology that measures resilience costs that result from a disruption to infrastructure function. The framework also includes a qualitative analysis methodology that assesses system characteristics affecting resilience to provide insight and direction for potential improvements. This article describes the resilience assessment framework and demonstrates the utility of the assessment framework through application to two hypothetical scenarios involving the disruption of a petrochemical supply chain by hurricanes. © 2011 American Institute of Chemical Engineers (AIChE).

More Details

Earthquake warning system for infrastructures : a scoping analysis

Kelic, Andjelka; Stamber, Kevin L.; Brodsky, Nancy S.; Vugrin, Eric; Corbet Jr., Thomas F.; O'Connor, Sharon L.

This report provides the results of a scoping study evaluating the potential risk reduction value of a hypothetical, earthquake early-warning system. The study was based on an analysis of the actions that could be taken to reduce risks to population and infrastructures, how much time would be required to take each action and the potential consequences of false alarms given the nature of the action. The results of the scoping analysis indicate that risks could be reduced through improving existing event notification systems and individual responses to the notification; and production and utilization of more detailed risk maps for local planning. Detailed maps and training programs, based on existing knowledge of geologic conditions and processes, would reduce uncertainty in the consequence portion of the risk analysis. Uncertainties in the timing, magnitude and location of earthquakes and the potential impacts of false alarms will present major challenges to the value of an early-warning system.

More Details

Infrastructure resilience assessment through control design

International Journal of Critical Infrastructures

Vugrin, Eric; Camphouse, Russell

Infrastructure resilience is a priority for homeland security in many nations around the globe. This paper describes a new approach forquantitatively assessing the resilience of critical infrastructure systems. The mathematics of optimal control design provides the theoretical foundation for this methodology. This foundation enables the inclusion of recovery costs within the resilience assessment approach, a unique capability for quantitative esilience assessment techniques. This paper describes the formulation of the optimal control problem for a set of representative infrastructure models. Thisexample demonstrates the importance of recovery costs in quantitative resilience analysis, and the increased capability provided by this approach's ability to discern between varying levels of resilience. © 2011 Inderscience Enterprises Ltd.

More Details
Results 76–100 of 141
Results 76–100 of 141