Publications

Results 76–100 of 181

Search results

Jump to search filters

Use and Testing of a Wind Turbine for the Supply of Balancing Reserves and Wide-Area Grid Stability

Guttromson, Ross G.; Gravagne, Ian; Berg, Jonathan C.; White, Jonathan; Wilches-Bernal, Felipe; Summers, Adam; Schoenwald, David A.

This report documents the use of wind turbine inertial energy for the supply of two specific electric power grid services; system balancing and real power modulation to improve grid stability. Each service is developed to require zero net energy consumption. Grid stability was accomplished by modulating the real power output of the wind turbine at a frequency and phase associated with wide-area modes. System balancing was conducted using a grid frequency signal that was high-pass filtered to ensure zero net energy. Both services used Phasor Measurement Units (PMUs) as their primary source of system data in a feedforward control (for system balancing) and feedback control (for system stability).

More Details

Simulation results for the pacific DC intertie wide area damping controller

IEEE Power and Energy Society General Meeting

Pierre, Brian J.; Wilches-Bernal, Felipe; Elliott, Ryan T.; Schoenwald, David A.; Neely, Jason C.; Byrne, Raymond H.; Trudnowski, Daniel J.

This paper presents simulation results of a control scheme for damping inter-area oscillations using high-voltage DC (HVDC) power modulation. The control system utilizes realtime synchrophasor feedback to construct a supplemental commanded power signal for the Pacific DC Intertie (PDCI) in the North American Western Interconnection (WI). A prototype of this controller has been implemented in hardware and, after multiple years of development, successfully tested in both open and closed-loop operation. This paper presents simulation results of the WI during multiple severe contingencies with the damping controller in both open and closed-loop. The primary results are that the controller adds significant damping to the controllable modes of the WI and that it does not adversely affect the system response in any of the simulated cases. Furthermore, the simulations show that a feedback signal composed of the frequency difference between points of measurement near the Washington-Oregon border and the California-Oregon border can be employed with similar results to a feedback signal constructed from measurements taken near the Washington-Oregon border and southern California. This is an important consideration because it allowed the control system to be designed without relying upon cross-system measurements, which would have introduced significant additional delay.

More Details

Effect of time delay asymmetries in power system damping control

IEEE Power and Energy Society General Meeting

Wilches-Bernal, Felipe; Concepcion, Ricky J.; Neely, Jason C.; Schoenwald, David A.; Byrne, Raymond H.; Pierre, Brian J.; Elliott, Ryan T.

Distributed control compensation based on local and remote sensor feedback can improve small-signal stability in large distributed systems, such as electric power systems. Long distance remote measurements, however, are potentially subject to relatively long and uncertain network latencies. In this work, the issue of asymmetrical network latencies is considered for an active damping application in a two-area electric power system. The combined effects of latency and gain are evaluated in time domain simulation and in analysis using root-locus and the maximum singular value of the input sensitivity function. The results aid in quantifying the effects of network latencies and gain on system stability and disturbance rejection.

More Details

Effect of time delay asymmetries in power system damping control

IEEE Power and Energy Society General Meeting

Wilches-Bernal, Felipe; Concepcion, Ricky J.; Neely, Jason C.; Schoenwald, David A.; Byrne, Raymond H.; Pierre, Brian J.; Elliott, Ryan T.

Distributed control compensation based on local and remote sensor feedback can improve small-signal stability in large distributed systems, such as electric power systems. Long distance remote measurements, however, are potentially subject to relatively long and uncertain network latencies. In this work, the issue of asymmetrical network latencies is considered for an active damping application in a two-area electric power system. The combined effects of latency and gain are evaluated in time domain simulation and in analysis using root-locus and the maximum singular value of the input sensitivity function. The results aid in quantifying the effects of network latencies and gain on system stability and disturbance rejection.

More Details

Initial closed-loop testing results for the pacific DC intertie wide area damping controller

IEEE Power and Energy Society General Meeting

Trudnowski, Daniel; Pierre, Brian J.; Wilches-Bernal, Felipe; Schoenwald, David A.; Elliott, Ryan T.; Neely, Jason C.; Byrne, Raymond H.; Kosterev, Dmitry

Lightly damped electromechanical oscillations are a source of concern in the western interconnect. Recent development of a reliable real-time wide-area measurement system (WaMS) has enabled the potential for large-scale damping control approaches for stabilizing critical oscillation modes. a recent research project has focused on the development of a prototype feedback modulation controller for the Pacific DC Intertie (PDCI) aimed at stabilizing such modes. The damping controller utilizes real-time WaMS signals to form a modulation command for the DC power on the PDCI. This paper summarizes results from the first actual-system closed-loop tests. Results demonstrate desirable performance and improved modal damping consistent with previous model studies.

More Details

Battery Energy Storage State-of-Charge Forecasting: Models, Optimization, and Accuracy

IEEE Transactions on Smart Grid

Rosewater, David M.; Ferreira, Summer R.; Schoenwald, David A.; Hawkins, Jon; Santoso, Surya

Battery energy storage systems (BESS) are a critical technology for integrating high penetration renewable power on an intelligent electrical grid. As limited energy restricts the steady-state operational state-of-charge (SoC) of storage systems, SoC forecasting models are used to determine feasible charge and discharge schedules that supply grid services. Smart grid controllers use SoC forecasts to optimize BESS schedules to make grid operation more efficient and resilient. This study presents three advances in BESS state-of-charge forecasting. First, two forecasting models are reformulated to be conducive to parameter optimization. Second, a new method for selecting optimal parameter values based on operational data is presented. Last, a new framework for quantifying model accuracy is developed that enables a comparison between models, systems, and parameter selection methods. The accuracies achieved by both models, on two example battery systems, with each method of parameter selection are then compared in detail. The results of this analysis suggest variation in the suitability of these models for different battery types and applications. Finally, the proposed model formulations, optimization methods, and accuracy assessment framework can be used to improve the accuracy of SoC forecasts enabling better control over BESS charge/discharge schedules.

More Details

Inter-area oscillation damping in large-scale power systems using decentralized control

ASME 2018 Dynamic Systems and Control Conference, DSCC 2018

Biroon, Roghieh A.; Pisu, Pierluigi; Schoenwald, David A.

Inter-area oscillation is one of the main concerns in power system small signal stability. It involves wide area in power system, therefore identifying the causes and damping these oscillations are challenging. Undamped inter-area oscillations may cause severe problems in power systems including large-scale blackouts. Designing a proper controller for power systems also is a challenging problem due to the complexity of the system. Moreover, for a large-scale system it is impractical to collect all system information in one location to design a centralized controller. Decentralized controller will be more desirable for large scale systems to minimize the inter area oscillations by using local information. In this paper, we consider a large-scale power system consisting of three areas. After decomposing the system into three subsystems, each subsystem is modeled with a lower order system. Finally, a decentralized controller is designed for each subsystem to maintain the large-scale system frequency at the desired level even in the presence of disturbances.

More Details
Results 76–100 of 181
Results 76–100 of 181