Frequency Estimation Algorithms to Enable Synthetic Inertia
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Transactions on Power Systems
This paper describes the design and implementation of a proof-of-concept Pacific dc Intertie (PDCI) wide area damping controller and includes system test results on the North American Western Interconnection (WI). To damp inter-area oscillations, the controller modulates the power transfer of the PDCI, a ±500 kV dc transmission line in the WI. The control system utilizes real-time phasor measurement unit (PMU) feedback to construct a commanded power signal which is added to the scheduled power flow for the PDCI. After years of design, simulations, and development, this controller has been implemented in hardware and successfully tested in both open and closed-loop operation. The most important design specifications were safe, reliable performance, no degradation of any system modes in any circumstances, and improve damping to the controllable modes in the WI. The main finding is that the controller adds significant damping to the modes of the WI and does not adversely affect the system response in any of the test cases. The primary contribution of this paper, to the state of the art research, is the design methods and test results of the first North American real-time control system that uses wide area PMU feedback.
Abstract not provided.
This report presents a complete listing, as of May 2019, of the damping controller (DCON) project accomplishments including a project overview, project innovations, awards, patent application, journal papers, conference papers, project reports, and project presentations. The purpose of the DCON is to mitigate inter-area oscillations in the WI by active improvement of oscillatory mode damping using phasor measurement unit (PMU) feedback to modulate power flow in the PDCI. The DCON project is the result of a collaboration between Sandia National Laboratories (SNL), Montana Technological University (MTU), Bonneville Power Administration (BPA), and the Department of Energy Office of Electricity (DOE-OE).
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This document summarizes existing Marine and Hydrokinetic (MHK) performance metrics known to the United States Department of Energy and national laboratories. This document was updated based on feedback from the MHK Energy community, however, this summary still may not be exhaustive. There are a wide variety of needs and uses for metrics. All stakeholders, such as developers, funding agencies, investors, and researchers, have a need for metrics and their many uses. It is evident that the sector will benefit from clear techno economic performance metrics to guide development towards success. There are international efforts underway to bring the community together to (1) understand what metrics/approaches are being used currently and (2) reach a global framework on the approach to the measurement of success. This document serves to list existing metrics known to the U.S. at the present, and is not meant to represent international efforts or consensus.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Power and Energy Technology Systems Journal
This study describes the implementation of a tool to estimate latencies and data dropouts in communication networks transferring synchrophasor data defined by the C37.118 standard. The tool assigns a time tag to synchrophasor packets at the time it receives them according to a global positioning system clock and with this information is able to determine the time those packets took to reach the tool. The tool is able to connect simultaneously to multiple phasor measurement units (PMUs) sending packets at different reporting rates with different transport protocols such as user datagram protocol or transmission control protocol. The tool is capable of redistributing every packet it receives to a different device while recording the exact time this information is re-sent into the network. The results of measuring delays from a PMU using this tool are presented and compared with those of a conventional network analyzer. The results show that the tool presented in this paper measures delays more accurately and precisely than the conventional network analyzer.
This report serves as the executive summary to the comprehensive document that describes the software, control logic, and operational functions of the Pacific DC Intertie (PDCI) Oscillation Damping Controller. The purpose of the damping controller (DCON) is to mitigate inter-area oscillations in the Western Interconnection (WI) by active improvement of oscillatory mode damping using phasor measurement unit (PMU) feedback to modulate power flow in the PDCI. This report provides the high level descriptions, diagrams, and charts to receive a basic understanding of the organization and structure of the DCON software. This report complements the much longer comprehensive software document, and it does not include any proprietary information as the more comprehensive report does. The level of detail provided by the comprehensive report on the software documentation is intended to assist with the process needed to obtain compliance for North American Electric Reliability Corporation Critical Infrastructure Protection (NERC-CIP) as a Bulk energy system Cyber Asset (BCA) device. That report organizes, summarizes, and presents the charts, figures, and flow diagrams that detail the organization and function of the damping controller software. The PDCI Wide-Area Damping Controller is the result of a collaboration between Sandia National Laboratories (SNL), Bonneville Power Administration (BPA), Montana Tech University (MTU), and the Department of Energy (DOE).
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference
A wide-area controller to damp inter-area oscillations in the North American Western Interconnection (WI) by modulating power transfers in a HVDC link is used in this paper to investigate the effects that latencies in its feedback signals have on its performance. This controller uses two feedback measurements to perform its control action. The analysis show that the stabilizing effect of the controller in transient stability and small signal stability is compromised as the feedback measurements experience higher delays. The results show that one of the feedback signals can tolerate more delay than the other. The analysis was performed with Bode plots and time domain simulations on a reduced order model of the WI from which a linear version was obtained.
Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference
A wide-area controller to damp inter-area oscillations in the North American Western Interconnection (WI) by modulating power transfers in a HVDC link is used in this paper to investigate the effects that latencies in its feedback signals have on its performance. This controller uses two feedback measurements to perform its control action. The analysis show that the stabilizing effect of the controller in transient stability and small signal stability is compromised as the feedback measurements experience higher delays. The results show that one of the feedback signals can tolerate more delay than the other. The analysis was performed with Bode plots and time domain simulations on a reduced order model of the WI from which a linear version was obtained.
Abstract not provided.
Abstract not provided.