Publications

Results 176–200 of 315

Search results

Jump to search filters

Signatures of hot electrons and fluorescence in Mo Kα emission on Z

Physics of Plasmas

Hansen, Stephanie B.; Ampleford, David A.; Cuneo, M.E.; Ouart, N.; Jones, Brent M.; Jennings, C.A.; Dasgupta, A.; Coverdale, Christine A.; Rochau, G.A.; Dunham, Gregory S.; Giuliani, J.L.; Apruzese, J.P.

Recent experiments on the Z accelerator have produced high-energy (17 keV) inner-shell K-alpha emission from molybdenum wire array z-pinches. Extensive absolute power and spectroscopic diagnostics along with collisional-radiative modeling enable detailed investigation into the roles of thermal, hot electron, and fluorescence processes in the production of high-energy x-rays. We show that changing the dimensions of the arrays can impact the proportion of thermal and non-thermal K-shell x-rays. © 2014 AIP Publishing LLC.

More Details

Two dimensional RMHD modeling of effective ion temperatures in recent ZR argon experiments

AIP Conference Proceedings

Jones, Brent M.; Giuliani, J.L.; Thornhill, J.W.; Apruzese, J.P.; Harvey-Thompson, Adam J.; Ampleford, David A.; Dasgupta, A.; Jennings, C.A.; Hansen, S.B.; Moore, N.W.; Lamppa, D.C.; Coverdale, Christine A.; Cuneo, M.E.; Rochau, G.A.

Radiation magnetohydrodynamic r-z simulations are performed of recent Ar shots on the refurbished Z generator to examine the effective ion temperature as determined from the observed line width of the He-γ line. While many global radiation properties can be matched to experimental results, the Doppler shifts due to velocity gradients at stagnation cannot reproduce the large experimentally determined width corresponding to an effective ion temperature of 50 keV. Ion viscous heating or magnetic bubbles are considered, but understanding the width remains an unsolved challenge.

More Details

X-ray power and yield measurements at the refurbished Z machine

Review of Scientific Instruments

Jones, Brent M.; Ampleford, David A.; Cuneo, M.E.; Hohlfelder, Robert J.; Jennings, C.A.; Johnson, Drew J.; Jones, Brent M.; Lopez, M.R.; Macarthur, J.; Mills, Jerry A.; Preston, T.; Rochau, G.A.; Savage, Mark E.; Spencer, D.; Sinars, Daniel S.; Porter, J.L.

Advancements have been made in the diagnostic techniques to measure accurately the total radiated x-ray yield and power from z-pinch implosion experiments at the Z machine with high accuracy. The Z machine is capable of outputting 2 MJ and 330 TW of x-ray yield and power, and accurately measuring these quantities is imperative. We will describe work over the past several years which include the development of new diagnostics, improvements to existing diagnostics, and implementation of automated data analysis routines. A set of experiments on the Z machine were conducted in which the load and machine configuration were held constant. During this shot series, it was observed that the total z-pinch x-ray emission power determined from the two common techniques for inferring the x-ray power, a Kimfol filtered x-ray diode diagnostic and the total power and energy diagnostic, gave 449 TW and 323 TW, respectively. Our analysis shows the latter to be the more accurate interpretation. More broadly, the comparison demonstrates the necessity to consider spectral response and field of view when inferring x-ray powers from z-pinch sources. © 2014 AIP Publishing LLC.

More Details

K-α emission spectroscopic analysis from a Cu Z-pinch

High Energy Density Physics

Jones, Brent M.; Ampleford, David A.; Hansen, Stephanie B.

Advances in diagnostic techniques at the Sandia Z-facility have facilitated the production of very detailed spectral data. In particular, data from the copper nested wire-array shot Z1975 provides a wealth of information about the implosion dynamics and ionization history of the pinch. Besides the dominant valence K- and L-shell lines in Z1975 spectra, K-α lines from various ionization stages were also observed. K-shell vacancies can be created from inner-shell excitation and ionization by hot electrons and from photo-ionization by high-energy photons; these vacancies are subsequently filled by Auger decay or resonance fluorescence. The latter process produces the K-α emission. For plasmas in collisional equilibrium, K-α emission usually occurs from highly charged ions due to the high electron temperatures required for appreciable excitation of the K-α transitions. Our simulation of Z1975 was carried out with the NRL 1-D DZAPP non-LTE radiation-hydrodynamics model, and the resulting K- and L-shell synthetic spectra are compared with measured radiation data. Our investigation will focus on K-α generation by both impacting electrons and photons. Synthetic K-α spectra will be generated either by self-consistently calculating the K-shell vacancy production in a full Z-pinch simulation, or by post-processing data from a simulation. The analysis of these K-α lines as well as K- and L-shell emission from valence electrons should provide quantitative information about the dynamics of the pinch plasma.

More Details

Integration of MHD load models with circuit representations the Z generator

Ampleford, David A.; Savage, Mark E.; Moore, James M.; Jones, Brent M.; McBride, Ryan D.; Bailey, James E.; Jones, Michael J.; Gomez, Matthew R.; Cuneo, M.E.; Nakhleh, Charles N.; Stygar, William A.

MHD models of imploding loads fielded on the Z accelerator are typically driven by reduced or simplified circuit representations of the generator. The performance of many of the imploding loads is critically dependent on the current and power delivered to them, so may be strongly influenced by the generators response to their implosion. Current losses diagnosed in the transmission lines approaching the load are further known to limit the energy delivery, while exhibiting some load dependence. Through comparing the convolute performance of a wide variety of short pulse Z loads we parameterize a convolute loss resistance applicable between different experiments. We incorporate this, and other current loss terms into a transmission line representation of the Z vacuum section. We then apply this model to study the current delivery to a wide variety of wire array and MagLif style liner loads.

More Details

Architecture, implementation, and testing of a multiple-shell gas injection system for high current implosions on the Z accelerator

Review of Scientific Instruments

Strizic, Thomas S.; Johnson, Drew J.; Cunningham, Paul C.; Johns, Owen J.; Vigil, Marcelino V.; Jones, Brent M.; Ampleford, David A.; Savage, Mark E.; Cuneo, M.E.; Jones, Michael J.; Lamppa, Derek C.; Mckenney, John M.

Tests are ongoing to conduct ~20 MA z-pinch implosions on the Z accelerator at Sandia National Laboratory using Ar, Kr, and D2 gas puffs as the imploding loads. The relatively high cost of operations on a machine of this scale imposes stringent requirements on the functionality, reliability, and safety of gas puff hardware. Here we describe the development of a prototype gas puff system including the multiple-shell nozzles, electromagnetic drivers for each nozzle's valve, a UV pre-ionizer, and an inductive isolator to isolate the ~2.4 MV machine voltage pulse present at the gas load from the necessary electrical and fluid connections made to the puff system from outside the Z vacuum chamber. This paper shows how the assembly couples to the overall Z system and presents data taken to validate the functionality of the overall system.

More Details
Results 176–200 of 315
Results 176–200 of 315