Publications

Results 1–25 of 26

Search results

Jump to search filters

A Comprehensive Open-Source R Software For Statistical Metrology Calculations: From Uncertainty Evaluation To Risk Analysis

NCSLI Measure

Delker, Collin J.

Whether calibrating equipment or inspecting products on the factory floor, metrology requires many complicated statistical calculations to achieve a full understanding and evaluation of measurement uncertainty and quality. In order to assist its workforce in performing these calculations in a consistent and rigorous way, the Primary Standards Lab at Sandia National Laboratories (SNL) has developed a free and open-source software package for computing various metrology calculations from uncertainty propagation to risk analysis. In addition to propagating uncertainty through a measurement model using the well-known Guide to Expression of Uncertainty in Measurement or Monte Carlo approaches, evaluating the individual Type A and Type B uncertainty components that go into the measurement model often requires other statistical methods such as analysis of variance or determining uncertainty in a fitted curve. Once the uncertainty in a measurement has been calculated, it is usually evaluated from a risk perspective to ensure the measurement is suitable for making a particular conformance decision. Finally, SNL’s software can perform all these calculations in a single application via an easy-to-use graphical interface, where the different functions are integrated so the results of one calculation can be used as inputs to another calculation.

More Details

Evaluation of Guardbanding Methods for Calibration and Product Acceptance

Delker, Collin J.

The Primary Standards Lab employs guardbanding methods to reduce risk of false acceptance in calibration when test uncertainty ratios are low. Similarly, production agencies guardband their requirements to reduce false accept rates in product acceptance. The root-sum-square guardbanding method is recommended by PSL, but many other guardbanding methods have been proposed in literature or implemented in commercial software. This report analyzes the false accept and reject rates resulting from the most common guardbanding methods. It is shown that the root-sum-square method and the Dobbert Managed Guardband strategy are similar and both are suitable for calibration and product acceptance work in the NSE.

More Details

Calculating Interval Uncertainties for Calibration Standards That Drift with Time

NCSLI Measure

Delker, Collin J.; Solomon, Otis M.; Auden, Elizabeth C.

Calibrated values of many devices exhibit predictable drift over time. To provide an uncertainty statement valid over the entire calibration interval, one must account for drift. In this article, a method of accounting for drift is proposed based on guidance in the Guide to Expression of Uncertainty in Measurement. An additional uncertainty term is computed using a linear regression of historical measurement data, which is included along with the time-of-test uncertainty. This method is evaluated by analyzing its average out-of-tolerance (OOT) rate using a Monte Carlo simulation, which results in the desired 5% average OOT rate when the total uncertainty is expanded to a 95% confidence interval.

More Details

Position-Dependent Transport of n-p-n Junctions in Axially Doped SiGe Nanowire Transistors

IEEE Electron Device Letters

Delker, Collin J.; Yoo, Jinkyoung; Swartzentruber, Brian S.; Harris, Charles T.

Nanowire transistors are typically undoped devices whose characteristics depend strongly on the injection of carriers from the electrical contacts. In this letter, we fabricate and characterize SiGe nanowire transistors with an n-p-n doping profile and with a top gate covering only the p-doped section of the nanowire. For each device, we locate the p-segment with scanning capacitance microscopy, where the p-segment position varies along the channel due to the stochastic nature of our dropcast fabrication technique. The current-voltage characteristics for a series of transistors with different gate positions reveal that the on/off ratios for electrons is the highest when the gated p-type section is closest to the source contact, whereas the on/off ratios for holes is the highest when the gated p-type section is closest to the drain contact.

More Details

Dual-gate operation and carrier transport in SiGe p-n junction nanowires

Nanotechnology

Delker, Collin J.; Yoo, J.Y.; Bussmann, Ezra B.; Swartzentruber, Brian S.; Harris, Charles T.

We investigate carrier transport in silicon-germanium nanowires with an axial p-n junction doping profile by fabricating these wires into transistors that feature separate top gates over each doping segment. By independently biasing each gate, carrier concentrations in the n- and p-side of the wire can be modulated. For these devices, which were fabricated with nickel source-drain electrical contacts, holes are the dominant charge carrier, with more favorable hole injection occurring on the p-side contact. Channel current exhibits greater sensitivity to the n-side gate, and in the reverse biased source-drain configuration, current is limited by the nickel/n-side Schottky contact.

More Details

Understanding the Effects of Cationic Dopants on α-MnO2 Oxygen Reduction Reaction Electrocatalysis

Journal of Physical Chemistry C

Lambert, Timothy N.; Vigil, Julian A.; White, Suzanne E.; Delker, Collin J.; Davis, Danae J.; Kelly, Maria K.; Brumbach, Michael T.; Rodriguez, Mark A.; Swartzentruber, Brian S.

Nickel-doped α-MnO2 nanowires (Ni-α-MnO2) were prepared with 3.4% or 4.9% Ni using a hydrothermal method. A comparison of the electrocatalytic data for the oxygen reduction reaction (ORR) in alkaline electrolyte versus that obtained with α-MnO2 or Cu-α-MnO2 is provided. In general, Ni-α-MnO2 (e.g., Ni-4.9%) had higher n values (n = 3.6), faster kinetics (k = 0.015 cm s-1), and lower charge transfer resistance (RCT = 2264 Ω at half-wave) values than MnO2 (n = 3.0, k = 0.006 cm s-1, RCT = 6104 Ω at half-wave) or Cu-α-MnO2 (Cu-2.9%, n = 3.5, k = 0.015 cm s-1, RCT = 3412 Ω at half-wave), and the overall activity for Ni-α-MnO2 trended with increasing Ni content, i.e., Ni-4.9% > Ni-3.4%. As observed for Cu-α-MnO2, the increase in ORR activity correlates with the amount of Mn3+ at the surface of the Ni-α-MnO2 nanowire. Examining the activity for both Ni-α-MnO2 and Cu-α-MnO2 materials indicates that the Mn3+ at the surface of the electrocatalysts dictates the activity trends within the overall series. Single nanowire resistance measurements conducted on 47 nanowire devices (15 of α-MnO2, 16 of Cu-α-MnO2-2.9%, and 16 of Ni-α-MnO2-4.9%) demonstrated that Cu-doping leads to a slightly lower resistance value than Ni-doping, although both were considerably improved relative to the undoped α-MnO2. The data also suggest that the ORR charge transfer resistance value, as determined by electrochemical impedance spectroscopy, is a better indicator of the cation-doping effect on ORR catalysis than the electrical resistance of the nanowire. (Figure Presented).

More Details

Understanding channel and contact effects on transport in 1-dimensional nanotransistors

Swartzentruber, Brian S.; Delker, Collin J.; Yoo, Jinkyoung; Janes, David B.

Nanowire transistors are generally formed by metal contacts to a uniformly doped nanowire. The transistor can be modeled as a series combination of resistances from both the channel and the contacts. In this study, a simple model is proposed consisting of a resistive channel in series with two Schottky metal-semiconductor contacts modeled using the WKB approximation. This model captures several phenomena commonly observed in nanowire transistor measurements, including the mobility as a function of gate potential, mobility reduction with respect to bulk mobility, and non-linearities in output characteristics. For example, the maximum measured mobility as a function of gate voltage in a nanowire transistor can be predicted based on the semiconductor bulk mobility in addition to barrier height and other properties of the contact. The model is then extended to nanowires with axial p-n junctions having an inde- pendent gate over each wire segment by splitting the channel resistance into a series component for each doping segment. Finally, the contact-channel model is applied to low-frequency noise analysis in nanowire devices, where the noise can be generated in both the channel and the contacts. Because contacts play a major, yet often neglected, role in nanowire transistor operation, they must be accounted for in order to extract meaningful parameters from I-V and noise measurements.

More Details
Results 1–25 of 26
Results 1–25 of 26