PLADD: Deterring Attacks on Cyber Systems and Moving Target Defense
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The MELCOR Accident Consequence Code System (MACCS) code is the NRC code used to perform probabilistic health and economic consequence assessments for atmospheric releases of radionuclides. MACCS is used by U.S. nuclear power plant license renewal applicants to support the plant specific evaluation of severe accident mitigation alternatives (SAMA) analyses as part of an applicant's environmental report for license renewal. MACCS is also used in severe accident mitigation design alternatives (SAMDA) and severe accident consequence analyses for environmental impact statements (EISs) for new reactor applications. The NRC uses MACCS in its cost-benefit assessments supporting regulatory analyses that evaluate potential new regulatory requirements for nuclear power plants. NRC regulatory analysis guidelines recommend the use of MACCS to estimate the averted "offsite property damage" cost (benefit) and the averted offsite dose cost elements.
Abstract not provided.
This project evaluates the effectiveness of moving target defense (MTD) techniques using a new game we have designed, called PLADD, inspired by the game FlipIt [28]. PLADD extends FlipIt by incorporating what we believe are key MTD concepts. We have analyzed PLADD and proven the existence of a defender strategy that pushes a rational attacker out of the game, demonstrated how limited the strategies available to an attacker are in PLADD, and derived analytic expressions for the expected utility of the game’s players in multiple game variants. We have created an algorithm for finding a defender’s optimal PLADD strategy. We show that in the special case of achieving deterrence in PLADD, MTD is not always cost effective and that its optimal deployment may shift abruptly from not using MTD at all to using it as aggressively as possible. We believe our effort provides basic, fundamental insights into the use of MTD, but conclude that a truly practical analysis requires model selection and calibration based on real scenarios and empirical data. We propose several avenues for further inquiry, including (1) agents with adaptive capabilities more reflective of real world adversaries, (2) the presence of multiple, heterogeneous adversaries, (3) computational game theory-based approaches such as coevolution to allow scaling to the real world beyond the limitations of analytical analysis and classical game theory, (4) mapping the game to real-world scenarios, (5) taking player risk into account when designing a strategy (in addition to expected payoff), (6) improving our understanding of the dynamic nature of MTD-inspired games by using a martingale representation, defensive forecasting, and techniques from signal processing, and (7) using adversarial games to develop inherently resilient cyber systems.
The current expansion of natural gas (NG) development in the United States requires an understanding of how this change will affect the natural gas industry, downstream consumers, and economic growth in order to promote effective planning and policy development. The impact of this expansion may propagate through the NG system and US economy via changes in manufacturing, electric power generation, transportation, commerce, and increased exports of liquefied natural gas. We conceptualize this problem as supply shock propagation that pushes the NG system and the economy away from its current state of infrastructure development and level of natural gas use. To illustrate this, the project developed two core modeling approaches. The first is an Agent-Based Modeling (ABM) approach which addresses shock propagation throughout the existing natural gas distribution system. The second approach uses a System Dynamics-based model to illustrate the feedback mechanisms related to finding new supplies of natural gas - notably shale gas - and how those mechanisms affect exploration investments in the natural gas market with respect to proven reserves. The ABM illustrates several stylized scenarios of large liquefied natural gas (LNG) exports from the U.S. The ABM preliminary results demonstrate that such scenario is likely to have substantial effects on NG prices and on pipeline capacity utilization. Our preliminary results indicate that the price of natural gas in the U.S. may rise by about 50% when the LNG exports represent 15% of the system-wide demand. The main findings of the System Dynamics model indicate that proven reserves for coalbed methane, conventional gas and now shale gas can be adequately modeled based on a combination of geologic, economic and technology-based variables. A base case scenario matches historical proven reserves data for these three types of natural gas. An environmental scenario, based on implementing a $50/tonne CO 2 tax results in less proven reserves being developed in the coming years while demand may decrease in the absence of acceptable substitutes, incentives or changes in consumer behavior. An increase in demand of 25% increases proven reserves being developed by a very small amount by the end of the forecast period of 2025.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Since the original economic model for MACCS was developed, better quality economic data (as well as the tools to gather and process it) and better computational capabilities have become available. The update of the economic impacts component of the MACCS legacy model will provide improved estimates of business disruptions through the use of Input-Output based economic impact estimation. This paper presents an updated MACCS model, bases on Input-Output methodology, in which economic impacts are calculated using the Regional Economic Accounting analysis tool (REAcct) created at Sandia National Laboratories. This new GDP-based model allows quick and consistent estimation of gross domestic product (GDP) losses due to nuclear power plant accidents. This paper outlines the steps taken to combine the REAcct Input-Output-based model with the MACCS code, describes the GDP loss calculation, and discusses the parameters and modeling assumptions necessary for the estimation of long-term effects of nuclear power plant accidents.
Environment, Systems, & Decisions
Adaptation is believed to be a source of resilience in systems. It has been difficult to measure the contribution of adaptation to resilience, unlike other resilience mechanisms such as restoration and recovery. One difficulty comes from treating adaptation as a deus ex machina that is interjected after a disruption. This provides no basis for bounding possible adaptive responses. We can bracket the possible effects of adaptation when we recognize that it occurs continuously, and is in part responsible for the current system’s properties. In this way the dynamics of the system’s pre-disruption structure provides information about post-disruption adaptive reaction. Seen as an ongoing process, adaptation has been argued to produce “robust-yet-fragile” systems. Such systems perform well under historical stresses but become committed to specific features of those stresses in a way that makes them vulnerable to system-level collapse when those features change. In effect adaptation lessens the cost of disruptions within a certain historical range, at the expense of increased cost from disruptions outside that range. Historical adaptive responses leave a signature in the structure of the system. Studies of ecological networks have suggested structural metrics that pick out systemic resilience in the underlying ecosystems. If these metrics are generally reliable indicators of resilience they provide another strategy for gaging adaptive resilience. To progress in understanding how the process of adaptation and the property of resilience interrelate in infrastructure systems, we pose some specific questions: Does adaptation confer resilience?; Does it confer resilience to novel shocks as well, or does it tune the system to fragility?; Can structural features predict resilience to novel shocks?; Are there policies or constraints on the adaptive process that improve resilience?.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Environment System and Decisions (special issue on cybersecurity risk and decisions)
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.