Overview: Energy Equity & Environmental Justice
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Conference Record of the IEEE Photovoltaic Specialists Conference
During the last decade, utility companies around the world have experienced a significant increase in the occurrences of either planned or unplanned blackouts, and microgrids have emerged as a viable solution to improve grid resiliency and robustness. Recently, power converters with grid-forming capabilities have attracted interest from researchers and utilities as keystone devices enabling modern microgrid architectures. Therefore, proper and thorough testing of Grid-Forming Inverters (GFMIs) is crucial to understand their dynamics and limitations before they are deployed. The use of closed-loop real-time Power Hardware-in-the-Loop (PHIL) simulations will facilitate the testing of GFMIs using a digital twin of the power system under various contingency scenarios within a controlled environment. So far, lower to medium scale commercially available GFMIs are difficult to interface into PHIL simulations because of their lack of a synchronization mechanism that allows a smooth and stable interconnection with a voltage source such as a power amplifier. Under this scenario, the use of the well-known Ideal Transformer Method to create a PHIL setup can lead to catastrophic damages of the GFMI. This paper addresses a simple but novel method to interface commercially available GFMIs into a PHIL testbed. Experimental results showed that the proposed method is stable and accurate under standalone operation with abrupt (step) load-changing dynamics, followed by the corresponding steady state behavior. Such results were validated against the dynamics of the GFMI connected to a linear load bank.
Conference Record of the IEEE Photovoltaic Specialists Conference
During the last decade, utility companies around the world have experienced a significant increase in the occurrences of either planned or unplanned blackouts, and microgrids have emerged as a viable solution to improve grid resiliency and robustness. Recently, power converters with grid-forming capabilities have attracted interest from researchers and utilities as keystone devices enabling modern microgrid architectures. Therefore, proper and thorough testing of Grid-Forming Inverters (GFMIs) is crucial to understand their dynamics and limitations before they are deployed. The use of closed-loop real-time Power Hardware-in-the-Loop (PHIL) simulations will facilitate the testing of GFMIs using a digital twin of the power system under various contingency scenarios within a controlled environment. So far, lower to medium scale commercially available GFMIs are difficult to interface into PHIL simulations because of their lack of a synchronization mechanism that allows a smooth and stable interconnection with a voltage source such as a power amplifier. Under this scenario, the use of the well-known Ideal Transformer Method to create a PHIL setup can lead to catastrophic damages of the GFMI. This paper addresses a simple but novel method to interface commercially available GFMIs into a PHIL testbed. Experimental results showed that the proposed method is stable and accurate under standalone operation with abrupt (step) load-changing dynamics, followed by the corresponding steady state behavior. Such results were validated against the dynamics of the GFMI connected to a linear load bank.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Conference Record of the IEEE Photovoltaic Specialists Conference
Inverters using phase-locked loops for control depend on voltages generated by synchronous machines to operate. This might be problematic if much of the conventional generation fleet is displaced by inverters. To solve this problem, grid-forming control for inverters has been proposed as being capable of autonomously regulating grid voltages and frequency. Presently, the performance of bulk power systems with massive penetration of grid-forming inverters has not been thoroughly studied as to elucidate benefits. Hence, this paper presents inverter models with two grid-forming strategies: virtual oscillator control and droop control. The two models are specifically developed to be used in positive-sequence simulation packages and have been implemented in PSLF. The implementations are used to study the performance of bulk power grids incorporating inverters with gridforming capability. Specifically, simulations are conducted on a modified IEEE 39-bus test system and the microWECC test system with varying levels of synchronous and inverter-based generation. The dynamic performance of the tested systems with gridforming inverters during contingency events is better than cases with only synchronous generation.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Most inverters for use in distribution-connected distributed energy resource applications (distributed generation and energy storage) are tested and certified to detect and cease to energize unintentional islands on the electric grid. The requirements for the performance of islanding detection methods are specified in IEEE 1547-2018, and specified conditions for certification- type testing of islanding detection are defined in IEEE 1547.1. Such certification-type testing is designed to ensure a minimum level of confidence that these inverters will not island in field applications. However, individual inverter certification tests do not address interactions between dissimilar inverters or between inverter and synchronous machines that may occur in the field. This work investigates the performance of different inverter island detection methods for these two circumstances that are not addressed by the type testing: 1) combinations of different inverters using different types of islanding detection methods, and 2) combinations of inverters and synchronous generators. The analysis took into consideration voltage and frequency ride- through requirements as specified in IEEE 1547-2018, but did not consider grid support functionality such as voltage or frequency response. While the risk of islanding is low even in these cases, it is often difficult to deal with these scenarios in a simplified interconnection screening process. This type of analysis could provide a basis to establish a practical anti- islanding screening methodology for these complex scenarios, with the goal of reducing the number of required detailed studies. Eight generic Groups of islanding detection behavior are defined, and examples of each are used in the simulations. The results indicate that islanding detection methods lose effectiveness at significantly different rates as the composition of the distributed energy resources (DERs) varies, with some methods remaining highly effective over a wide range of conditions.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Transactions on Power Systems
This letter presents a new frequency control strategy that takes advantage of communications and fast responding resources such as photovoltaic generation, energy storage, wind generation, and demand response, termed collectively as converter interfaced generators (CIGs). The proposed approach uses an active monitoring of power imbalances to rapidly redispatch CIGs. This approach differs from previously proposed frequency control schemes in that it employs feed-forward control based on a measured power imbalance rather than relying on a frequency measurement. Time-domain simulations of the full Western Electricity Coordinating Council system are conducted to demonstrate the effectiveness of the proposed method, showing improved performance.