Synthesis and Processing of Meta-stable Negative Thermal expansion Materials Zirconium Tungstate and zirconium phosphotungstate (ZrW2O8 and ZrWP2O12)
Abstract not provided.
Abstract not provided.
International High-Level Radioactive Waste Management 2019, IHLRWM 2019
We use molecular simulations to provide a conceptual understanding of a crystalline-amorphous interface for a candidate negative thermal expansion (NTE) material. Specifically, classical molecular dynamics (MD) simulations were used to investigate the temperature and pressure dependence on structural properties of ZrW2O8. Polarizability of oxygen atoms was included to better account for the electronic charge distribution within the lattice. Constant-pressure simulations of cubic crystalline ZrW2O8 at ambient pressure reveal a slight NTE behavior, characterized by a small structural rearrangement resulting in oxygen sharing between adjacent WO4 tetrahedra. Periodic quantum calculations confirm that the MD-optimized structure is lower in energy than the idealized structure obtained from neutron diffraction experiments. Additionally, simulations of pressure-induced amorphization of ZrW2O8 at 300 K indicate that an amorphous phase forms at pressures greater than 10 GPa, and this phase persists when the pressure is decreased to 1 bar. Simulations were performed on a hybrid model consisting of amorphous ZrW2O8 in direct contact with the cubic crystalline phase. Upon equilibration at 300 K and 1 bar, the crystalline phase remains unchanged beyond a thin layer of disrupted structure at the amorphous interface. Detailed analysis reveals the transition in metal coordination at the interface.
ACS Omega
The negative thermal expansion (NTE) material Zr2(WO4)(PO4)2 has been investigated for the first time within the framework of the density functional perturbation theory (DFPT). The structural, mechanical, and thermodynamic properties of this material have been predicted using the Perdew, Burke and Ernzerhof for solid (PBEsol) exchange-correlation functional, which showed superior accuracy over standard functionals in previous computational studies of the NTE material α-ZrW2O8. The bulk modulus calculated for Zr2(WO4)(PO4)2 using the Vinet equation of state at room temperature is K0 = 63.6 GPa, which is in close agreement with the experimental estimate of 61.3(8) at T = 296 K. The computed mean linear coefficient of thermal expansion is -3.1 × 10-6 K-1 in the temperature range ∼0-70 K, in line with the X-ray diffraction measurements. The mean Grüneisen parameter controlling the thermal expansion of Zr2(WO4)(PO4)2 is negative below 205 K, with a minimum of -2.1 at 10 K. The calculated standard molar heat capacity and entropy are CP0 = 287.6 and S0 = 321.9 J·mol-1·K-1, respectively. The results reported in this study demonstrate the accuracy of DFPT/PBEsol for assessing or predicting the relationship between structural and thermomechanical properties of NTE materials.
Abstract not provided.
Abstract not provided.
Journal of Raman Spectroscopy
Cubic zirconium tungstate (α-ZrW2O8), a well-known negative thermal expansion material, has been investigated within the framework of density functional perturbation theory (DFPT), combined with experimental characterization to assess and validate computational results. Using combined Fourier transform infrared measurements and DFPT calculations, new and extensive assignments were made for the far-infrared (<400 cm−1) spectrum of α-ZrW2O8. A systematic comparison of DFPT-simulated infrared, Raman, and phonon density-of-state spectra with Fourier transform far-/mid-infrared and Raman data collected in this study, as well as with available inelastic neutron scattering measurements, shows the superior accuracy of the PBEsol exchange-correlation functional over standard PBE calculations for studying the spectroscopic properties of this material.
Chemical Physics Letters
Elastic and thermodynamic properties of negative thermal expansion (NTE) αα-ZrW2O8 have been calculated using PBEsol and PBE exchange-correlation functionals within the framework of density functional perturbation theory (DFPT). Measured elastic constants are reproduced within ~2% with PBEsol and 6% with PBE. The thermal evolution of the Grüneisen parameter computed within the quasi-harmonic approximation exhibits negative values below the Debye temperature, consistent with observation. The standard molar heat capacity is predicted to be C $O\atop{P}$=192.2 and 193.8 J mol-1K-1 with PBEsol and PBE, respectively. These results suggest superior accuracy of DFPT/PBEsol for studying the lattice dynamics, elasticity and thermodynamics of NTE materials.
Abstract not provided.
Abstract not provided.
Journal of Physical Chemistry. C
Cubic zirconium tungstate (α-ZrW2O8), a notorious negative thermal expansion (NTE) material, has been investigated within the framework of density functional perturbation theory (DFPT), combined with experimental characterization to assess and validate computational results. Spectroscopic, mechanical and thermodynamic properties have been derived from DFPT calculations. A systematic comparison of DFPT-simulated infrared, Raman, and phonon density-of-state spectra with Fourier transform far-/mid-infrared and Raman data collected in this study, as well as with available inelastic neutron scattering measurements, shows the supe-rior accuracy of the PBEsol exchange-correlation functional over standard PBE calculations. The thermal evolution of the Grüneisen parameter computed within the quasi-harmonic approximation exhibits negative values below the Debye temperature, consistent with the observed NTE characteristics of α-ZrW2O8. The standard molar heat capacity is predicted to be C$0\atop{P}$=193.8 and 192.2 J.mol-1.K-1 with PBE and PBEsol, respectively, ca. 7% lower than calorimetric data. In conclusion, these results demonstrate the accuracy of the DFPT/PBEsol approach for studying the spectroscopic, mechanical and thermodynamic properties of materials with anomalous thermal expansion.
Heterogeneous nucleation of methane hydrates has been examined using molecular simulation, experimental bulk synthesis, and scanning probe microscopy. Theoretical nucleation rates were determined using molecular dynamics simulations as a function of clay surface represented by hydrophobic and hydrophilic systems. Methane hydrates were synthesized with and without Na-montmorillonite in a bulk reactor pressure assembly. X-ray diffraction and Raman spectroscopy confirm the nucleation and growth of the synthesized hydrates. Various kinetic pathways were explored to produce methane or isobutene clathrates in an ultra-high vacuum apparatus at very low temperatures but scanning probe microscopy only indicates the formation of ice.
Sandia journal manuscript; Not yet accepted for publication
Methane hydrates are extremely important naturally-occurring crystalline materials that impact climate change, energy resources, geological hazards, and other major environmental issues. Whereas significant experimental effort has been completed to understanding the bulk thermodynamics of methane hydrate assemblies, little is understood on heterogeneous nucleation and growth of methane hydrates in clay-rich environments. Controlled synthesis experiments were completed at 265-285 K and 6.89 MPa to examine the impact of montmorillonite surfaces in clay-ice mixtures to nucleate and form methane hydrate. The results suggest that the hydrophilic and methane adsorbing properties of Namontmorillonite reduce the nucleation period of methane hydrate formation in pure ice systems.
Abstract not provided.
This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter reference model design in a complementary manner to Reference Models 1-4 contained in the above report. In this report, a conceptual design for an Oscillating Water Column Wave Energy Converter (WEC) device appropriate for the modeled reference resource site was identified, and a detailed backward bent duct buoy (BBDB) device design was developed using a combination of numerical modeling tools and scaled physical models. Our team used the methodology in SAND2013-9040 for the economic analysis that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays, up to 100 devices. The methodology was applied to identify key cost drivers and to estimate levelized cost of energy (LCOE) for this RM6 Oscillating Water Column device in dollars per kilowatt-hour ($/kWh). Although many costs were difficult to estimate at this time due to the lack of operational experience, the main contribution of this work was to disseminate a detailed set of methodologies and models that allow for an initial cost analysis of this emerging technology. This project is sponsored by the U.S. Department of Energy's (DOE) Wind and Water Power Technologies Program Office (WWPTO), within the Office of Energy Efficiency & Renewable Energy (EERE). Sandia National Laboratories, the lead in this effort, collaborated with partners from National Laboratories, industry, and universities to design and test this reference model.
An oscillating water column (OWC) wave energy converter is a structure with an opening to the ocean below the free surface, i.e. a structure with a moonpool. Two structural models for a non-axisymmetric terminator design OWC, the Backward Bent Duct Buoy (BBDB) are discussed in this report. The results of this structural model design study are intended to inform experiments and modeling underway in support of the U.S. Department of Energy (DOE) initiated Reference Model Project (RMP). A detailed design developed by Re Vision Consulting used stiffeners and girders to stabilize the structure against the hydrostatic loads experienced by a BBDB device. Additional support plates were added to this structure to account for loads arising from the mooring line attachment points. A simplified structure was designed in a modular fashion. This simplified design allows easy alterations to the buoyancy chambers and uncomplicated analysis of resulting changes in buoyancy.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Sustainability is a critical national security issue for the U.S. and other nations. Sandia National Laboratories (SNL) is already a global leader in sustainability science and technology (SS&T) as documented in this report. This report documents the ongoing work conducted this year as part of the Sustainability Innovation Foundry (SIF). The efforts of the SIF support Sandia's national and international security missions related to sustainability and resilience revolving around energy use, water use, and materials, both on site at Sandia and externally. The SIF leverages existing Sandia research and development (R&D) in sustainability science and technology to support new solutions to complex problems. The SIF also builds on existing Sandia initiatives to support transformation of Sandia into a fully sustainable entity in terms of materials, energy, and water use. In the long term, the SIF will demonstrate the efficacy of sustainability technology developed at Sandia through prototyping and test bed approaches and will provide a common platform for support of solutions to the complex problems surrounding sustainability. Highlights from this year include the Sustainability Idea Challenge, improvements in facilities energy use, lectures and presentations from relevant experts in sustainability [Dr. Barry Hughes, University of Denver], and significant development of the Institutional Transformation (IX) modeling tools to support evaluation of proposed modifications to the SNL infrastructure to realize energy savings.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.