Producing and distributing COVID-19 vaccine during the pandemic is a major logistical challenge requiring careful planning and efficient execution. This report presents information on logistical, policy and technical issues relevant to rapidly fielding a COVID-19 vaccination program. For this study we (a) conducted literature review and subject matter expert elicitation to understand current vaccine manufacturing and distribution capabilities and vaccine allocation strategies, (b) designed a baseline vaccine distribution strategy and modeling strategy to provide insight into the potential for targeted distribution of limited initial vaccine supplies, and (c) developed parametric interfaces to enable vaccine distribution scenarios to be analyzed in depth with Sandias Adaptive Recovery Model that will allow us evaluate the additional sub- populations and alternative distribution scenarios from a public health benefit and associated economic disruption Principal issues, challenges, and complexities that complicate COVID-19 vaccine delivery identified in our literature and subject matter expert investigation include these items: The United States has not mounted an urgent nationwide vaccination campaign in recent history. The existing global manufacturing and distribution infrastructure are not able to produce enough vaccine for the population immediately. Vaccines, once available will be scarce resources. Prioritization for vaccine allocation will be built on existing distribution networks. Vaccine distribution may not have a universal impact on disease transmission and morbidity because of scarcity, priority population demographics, and underlying disease transmission rates. Considerations for designing a vaccine distribution strategy are discussed. A baseline distribution strategy is designed and tested using the Adaptive Recovery Model, which couples a deterministic compartmental epidemiological model and a stochastic network model. We show the impact of this vaccine distribution strategy on hospitalizations, mortality, and contact tracing requirements. This model can be used to quantitatively evaluate alternative distribution scenarios, guiding policy decisions as vaccine candidates are narrowed down.
This report documents a new approach to designing disease control policies that allocate scarce testing, contact tracing, and vaccination resources to better control community transmission of COVID19 or similar diseases. The Adaptive Recovery Model (ARM) combines a deterministic compartmental disease model with a stochastic network disease propagation model to enable us to simulate COVID-19 community spread through the lens of two complementary modeling motifs. ARM contact networks are derived from cell-phone location data that have been anonymized and interpreted as individual arrivals to specic public locations. Modeling disease spread over these networks allows us to identify locations within communities conducive to rapid disease spread. ARM applies this model- and data-derived abstractions of community transmission to evaluate the effectiveness of disease control measures including targeted social distancing, contact tracing, testing and vaccination. The architecture of ARM provides a unique capacity to help decision makers understand how best to deploy scarce testing, tracing and vaccination resources to minimize disease-spread potential in a community. This document details the novel mathematical formulations underlying ARM, presents a dynamical stability analysis of the deterministic model components, a sensitivity analysis of control parameters and network structure, and summarizes a process for deriving contact networks from cell-phone location data. An example use case steps through applying ARM to evaluate three targeted social distancing policies using Bernalillo County, New Mexico as an exemplar test locale. This step-by-step analysis demonstrates how ARM can be used to measure the relative performance of competing public health policies. Initial scenario tests of ARM shows that ARMs design focus on resource utilization rather than simple incidence prediction can provide decision makers with additional quantitative guidance for managing ongoing public health emergencies and planning future responses.
Advances in sensor technology have increased our ability to monitor a wide range of environments. However, even as the cost of sensors decline, only a limited number of sensors can be installed at any given site. The physical placement of sensors, along with the sensor technology and operating conditions, can have a large impact on our ability to adequately monitor environmental change. This paper introduces a new open-source Python package, called Chama, that determines optimal sensor placement and technology to improve a sensor network's detection capabilities. The methods are demonstrated using site-specific methane emission scenarios that capture uncertainty in wind conditions and emission characteristics. Mixed-integer linear programming formulations are used to determine sensor locations and detection thresholds that maximize detection of the emission scenarios. The optimized sensor networks consistently increase the ability to detect leaks, as compared to sensors placed near each potential emission source or along the perimeter of the site.
In March and April of 2020 there was widespread concern about availability of medical resources required to treat Covid-19 patients who become seriously ill. A simulation model of supply management was developed to aid understanding of how to best manage available supplies and channel new production. Forecasted demands for critical therapeutic resources have tremendous uncertainty, largely due to uncertainties about the number and timing of patient arrivals. It is therefore essential to evaluate any process for managing supplies in view of this uncertainty. To support such evaluations, we developed a modeling framework that would allow an integrated assessment in the context of uncertainty quantification. At the time of writing there has been no need to execute this framework because adaptations of the medical system have been able to respond effectively to the outbreak. This report documents the framework and its implemented components should need later arise for its application.
Sandia National Laboratories is part of the government test and evaluation team for the Defense Advanced Research Projects Agency Collection and Monitoring via Planning for Active Situational Scenarios program. The program is designed to better understand competition in the area between peace and conventional conflict when adversary actions are subtle and difficult to detect. For the purposes of test and evaluation, Sandia conducted a range of activities for the program: creation of the Grey Zone Test Range; design of the data stream for a user experiment conducted with U.S. Indo-Pacific Command; design, implementation, and execution of the formal evaluation; and analysis and summary of the evaluation results. This report details Sandia's activities and provides additional information on the Grey Zone Test Range urban simulation environment developed to evaluate the performer technologies.
In response to anticipated resource shortfalls related to the treatment and testing of COVID-19, many communities are planning to build additional facilities to increase capacity. These facilities include field hospitals, testing centers, mobile manufacturing units, and distribution centers. In many cases, these facilities are intended to be temporary and are designed to meet an immediate need. When deciding where to place new facilities many factors need to be considered, including the feasibility of potential locations, existing resource availability, anticipated demand, and accessibility between patients and the new facility. In this project, a facility location optimization model was developed to integrate these key pieces of information to help decision makers identify the best place, or places, to build a facility to meet anticipated resource demands. The facility location optimization model uses the location of existing resources and the anticipated resource demand at each location to minimize the distance a patient must travel to get to the resource they need. The optimization formulation is presented below. The model was designed to operate at the county scale, where patients are grouped per county. This assumption can be modified to integrate other scales or include individual patients.
Flame detectors provide an important layer of protection for personnel in petrochemical plants, but effective placement can be challenging. A mixed-integer nonlinear programming formulation is proposed for optimal placement of flame detectors while considering non-uniform probabilities of detection failure. We show that this approach allows for the placement of fire detectors using a fixed sensor budget and outperforms models that do not account for imperfect detection. We develop a linear relaxation to the formulation and an efficient solution algorithm that achieves global optimality with reasonable computational effort. We integrate this problem formulation into the Python package, Chama, and demonstrate the effectiveness of this formulation on a small test case and on two real-world case studies using the fire and gas mapping software, Kenexis Effigy.
Drinking water utilities use booster stations to maintain chlorine residuals throughout water distribution systems. Booster stations could also be used as part of an emergency response plan to minimize health risks in the event of an unintentional or malicious contamination incident. The benefit of booster stations for emergency response depends on several factors, including the reaction between chlorine and an unknown contaminant species, the fate and transport of the contaminant in the water distribution system, and the time delay between detection and initiation of boosted levels of chlorine. This paper takes these aspects into account and proposes a mixed-integer linear program formulation for optimizing the placement of booster stations for emergency response. A case study is used to explore the ability of optimally placed booster stations to reduce the impact of contamination in water distribution systems.
Sampling of drinking water distribution systems is performed to ensure good water quality and protect public health. Sampling also satisfies regulatory requirements and is done to respond to customer complaints or emergency situations. Water distribution system modeling techniques can be used to plan and inform sampling strategies. However, a high degree of accuracy and confidence in the hydraulic and water quality models is required to support real-time response. One source of error in these models is related to uncertainty in model input parameters. Effective characterization of these uncertainties and their effect on contaminant transport during a contamination incident is critical for providing confidence estimates in model-based design and evaluation of different sampling strategies. In this paper, the effects of uncertainty in customer demand, isolation valve status, bulk reaction rate coefficient, contaminant injection location, start time, duration, and rate on the size and location of the contaminant plume are quantified for two example water distribution systems. Results show that the most important parameter was the injection location. The size of the plume was also affected by the reaction rate coefficient, injection rate, and injection duration, whereas the exact location of the plume was additionally affected by the isolation valve status. Uncertainty quantification provides a more complete picture of how contaminants move within a water distribution system and more information when using modeling results to select sampling locations.
This document summarizes research performed under the Laboratory Directed Research and Development (LDRD) project titled Developing Fugitive Emissions Sensor Networks: New Optimization Algorithms for Monitoring, Measurement and Verification. The purpose of this project is to develop methods and software to enhance detection programs through optimal design of the sensor network. This project includes both software development and field work. While this project is focused on methane emissions, the sensor placement optimization framework can be applied to a wide range of applications, including the placement of water quality sensors, surveillance cameras, fire and chemical detectors. This research has the potential to improve national security by improving the way sensors are deployed in the field.