Publications Details
Development, characterization, and modeling of a TaOx ReRAM for a neuromorphic accelerator
Marinella, Matthew J.; Mickel, Patrick R.; Lohn, Andrew L.; Hughart, David R.; Bondi, Robert J.; Mamaluy, Denis M.; Hjalmarson, Harold P.; Stevens, James E.; Decker, Seth D.; Apodaca, Roger A.; Evans, Brian R.; Aimone, James B.; Rothganger, Fredrick R.; James, Conrad D.; DeBenedictis, Erik
Resistive random access memory (ReRAM), or memristors, may be capable of significantly improve the efficiency of neuromorphic computing, when used as a central component of an analog hardware accelerator. However, the significant electrical variation within a device and between devices degrades the maximum efficiency and accuracy which can be achieved by a ReRAMbased neuromorphic accelerator. In this report, the electrical variability is characterized, with a particular focus on that which is due to fundamental, intrinsic factors. Analytical and ab initio models are presented which offer some insight into the factors responsible for this variability.