Publications

Results 26–50 of 395

Search results

Jump to search filters

Integrated System and Application Continuous Performance Monitoring and Analysis Capability

Aaziz, Omar R.; Allan, Benjamin A.; Brandt, James M.; Cook, Jeanine C.; Devine, Karen D.; Elliott, James E.; Gentile, Ann C.; Hammond, Simon D.; Kelley, Brian M.; Lopatina, Lena; Moore, Stan G.; Olivier, Stephen L.; Laros, James H.; Poliakoff, David Z.; Pawlowski, Roger P.; Regier, Phillip A.; Schmitz, Mark E.; Schwaller, Benjamin S.; Surjadidjaja, Vanessa S.; Swan, Matthew S.; Tucker, Nick; Tucker, Thomas; Vaughan, Courtenay T.; Walton, Sara P.

Scientific applications run on high-performance computing (HPC) systems are critical for many national security missions within Sandia and the NNSA complex. However, these applications often face performance degradation and even failures that are challenging to diagnose. To provide unprecedented insight into these issues, the HPC Development, HPC Systems, Computational Science, and Plasma Theory & Simulation departments at Sandia crafted and completed their FY21 ASC Level 2 milestone entitled "Integrated System and Application Continuous Performance Monitoring and Analysis Capability." The milestone created a novel integrated HPC system and application monitoring and analysis capability by extending Sandia's Kokkos application portability framework, Lightweight Distributed Metric Service (LDMS) monitoring tool, and scalable storage, analysis, and visualization pipeline. The extensions to Kokkos and LDMS enable collection and storage of application data during run time, as it is generated, with negligible overhead. This data is combined with HPC system data within the extended analysis pipeline to present relevant visualizations of derived system and application metrics that can be viewed at run time or post run. This new capability was evaluated using several week-long, 290-node runs of Sandia's ElectroMagnetic Plasma In Realistic Environments ( EMPIRE ) modeling and design tool and resulted in 1TB of application data and 50TB of system data. EMPIRE developers remarked this capability was incredibly helpful for quickly assessing application health and performance alongside system state. In short, this milestone work built the foundation for expansive HPC system and application data collection, storage, analysis, visualization, and feedback framework that will increase total scientific output of Sandia's HPC users.

More Details

Memo regarding the Final Review of FY21 ASC L2 Milestone 7840: Neural Mini-Apps for Future Heterogeneous HPC Systems

Oldfield, Ron A.; Plimpton, Steven J.; Laros, James H.; Poliakoff, David Z.; Sornborger, Andrew

The final review for the FY21 Advanced Simulation and Computing (ASC) Computational Systems and Software Environments (CSSE) L2 Milestone #7840 was conducted on August 25th, 2021 at Sandia National Laboratories in Albuquerque, New Mexico. The review committee/panel unanimously agreed that the milestone has been successfully completed, exceeding expectations on several of the key deliverables.

More Details

Uncertainty and Sensitivity Analysis Methods and Applications in the GDSA Framework (FY2021)

Swiler, Laura P.; Basurto, Eduardo B.; Brooks, Dusty M.; Eckert, Aubrey C.; Leone, Rosemary C.; Mariner, Paul M.; Portone, Teresa P.; Laros, James H.; Stein, Emily S.

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (FCT) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high-level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are design concept development and disposal system modeling. These priorities are directly addressed in the SFWST Geologic Disposal Safety Assessment (GDSA) control account, which is charged with developing a geologic repository system modeling and analysis capability, and the associated software, GDSA Framework, for evaluating disposal system performance for nuclear waste in geologic media. GDSA Framework is supported by SFWST Campaign and its predecessor the Used Fuel Disposition (UFD) campaign. This report fulfills the GDSA Uncertainty and Sensitivity Analysis Methods work package (SF-21SN01030404) level 3 milestone, Uncertainty and Sensitivity Analysis Methods and Applications in GDSA Framework (FY2021) (M3SF-21SN010304042). It presents high level objectives and strategy for development of uncertainty and sensitivity analysis tools, demonstrates uncertainty quantification (UQ) and sensitivity analysis (SA) tools in GDSA Framework in FY21, and describes additional UQ/SA tools whose future implementation would enhance the UQ/SA capability of GDSA Framework. This work was closely coordinated with the other Sandia National Laboratory GDSA work packages: the GDSA Framework Development work package (SF-21SN01030405), the GDSA Repository Systems Analysis work package (SF-21SN01030406), and the GDSA PFLOTRAN Development work package (SF-21SN01030407). This report builds on developments reported in previous GDSA Framework milestones, particularly M3SF 20SN010304032.

More Details

Increased preheat energy to MagLIF targets with cryogenic cooling

Harvey-Thompson, Adam J.; Geissel, Matthias G.; Crabtree, Jerry A.; Weis, Matthew R.; Gomez, Matthew R.; Fein, Jeffrey R.; Ampleford, David A.; Awe, Thomas J.; Chandler, Gordon A.; Galloway, B.R.; Hansen, Stephanie B.; Hanson, Jeffrey J.; Harding, Eric H.; Jennings, Christopher A.; Kimmel, Mark W.; Knapp, Patrick K.; Lamppa, Derek C.; Laros, James H.; Mangan, Michael M.; Maurer, A.; Perea, L.; Peterson, Kara J.; Porter, John L.; Rambo, Patrick K.; Robertson, Grafton K.; Rochau, G.A.; Ruiz, Daniel E.; Shores, Jonathon S.; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Yager-Elorriaga, David A.; York, Adam Y.; Paguio, R.R.; Smith, G.E.

Abstract not provided.

Simulation of powder bed metal additive manufacturing microstructures with coupled finite difference-Monte Carlo method

Additive Manufacturing

Rodgers, Theron R.; Abdeljawad, Fadi; Moser, Daniel M.; Laros, James H.; Carroll, Jay D.; Jared, Bradley H.; Bolintineanu, Dan S.; Mitchell, John A.; Madison, Jonathan D.

Grain-scale microstructure evolution during additive manufacturing is a complex physical process. As with traditional solidification methods of material processing (e.g. casting and welding), microstructural properties are highly dependent on the solidification conditions involved. Additive manufacturing processes however, incorporate additional complexity such as remelting, and solid-state evolution caused by subsequent heat source passes and by holding the entire build at moderately high temperatures during a build. We present a three-dimensional model that simulates both solidification and solid-state evolution phenomena using stochastic Monte Carlo and Potts Monte Carlo methods. The model also incorporates a finite-difference based thermal conduction solver to create a fully integrated microstructural prediction tool. The three modeling methods and their coupling are described and demonstrated for a model study of laser powder-bed fusion of 300-series stainless steel. The investigation demonstrates a novel correlation between the mean number of remelting cycles experienced during a build, and the resulting columnar grain sizes.

More Details
Results 26–50 of 395
Results 26–50 of 395