Publications

Results 87476–87500 of 99,299

Search results

Jump to search filters

Lipid membranes on nanostructured silicon

Sasaki, Darryl Y.; Slade, Andrea L.

A unique composite nanoscale architecture that combines the self-organization and molecular dynamics of lipid membranes with a corrugated nanotextured silicon wafer was prepared and characterized with fluorescence microscopy and scanning probe microscopy. The goal of this project was to understand how such structures can be assembled for supported membrane research and how the interfacial interactions between the solid substrate and the soft, self-assembled material create unique physical and mechanical behavior through the confinement of phases in the membrane. The nanometer scale structure of the silicon wafer was produced through interference lithography followed by anisotropic wet etching. For the present study, a line pattern with 100 nm line widths, 200 nm depth and a pitch of 360 nm pitch was fabricated. Lipid membranes were successfully adsorbed on the structured silicon surface via membrane fusion techniques. The surface topology of the bilayer-Si structure was imaged using in situ tapping mode atomic force microscopy (AFM). The membrane was observed to drape over the silicon structure producing an undulated topology with amplitude of 40 nm that matched the 360 nm pitch of the silicon structure. Fluorescence recovery after photobleaching (FRAP) experiments found that on the microscale those same structures exhibit anisotropic lipid mobility that was coincident with the silicon substructure. The results showed that while the lipid membrane maintains much of its self-assembled structure in the composite architecture, the silicon substructure indeed influences the dynamics of the molecular motion within the membrane.

More Details

Polymer grouts for plugging lost circulation in geothermal wells

Mansure, Arthur J.; Bauer, Stephen J.

We have concluded a laboratory study to evaluate the survival potential of polymeric materials used for lost circulation plugs in geothermal wells. We learned early in the study that these materials were susceptible to hydrolysis. Through a systematic program in which many potential chemical combinations were evaluated, polymers were developed which tolerated hydrolysis for eight weeks at 500 F. The polymers also met material, handling, cost, and emplacement criteria. This screening process identified the most promising materials. A benefit of this work is that the components of the polymers developed can be mixed at the surface and pumped downhole through a single hose. Further strength testing is required to determine precisely the maximum temperature at which extrusion through fractures or voids causes failure of the lost circulation plug.

More Details

Medical waste management plan

Lane, Todd; Vandernoot, Victoria A.

This plan describes the process for managing research generated medical waste at Sandia National Laboratories/California. It applies to operations at the Chemical and Radiation Detection Laboratory (CRDL), Building 968, and other biosafety level 1 or 2 activities at the site. It addresses the accumulation, storage, treatment and disposal of medical waste and sharps waste. It also describes the procedures to comply with regulatory requirements and SNL policies applicable to medical waste.

More Details

LDRD final report on nanovehicle light-driven propulsion

Shelnutt, John A.; Medforth, Craig J.; Singh, Anup K.; Van Swol, Frank B.

Having demonstrated the possibility of constructing nanoscale metallic vehicular bodies as described in last year's proposal, our goals have been to make uniform preparations of the metallized lipid assemblies and to determine the feasibility of powering these nanostructures with biological motors that are activated and driven by visible light. We desired that the propulsion system be constructed entirely by self-assembly and powered by a photocatalytic process partially already built into the nanovehicle. The nanovehicle we desire to build is composed of both natural biological components (ATPase, kinesin-microtubules) and biomimetic components (platinized liposomes, photosynthetic membrane) as functional units. The vehicle's body was originally envisioned to be composed of a surfactant liposomal bilayer coated with platinum nanoparticles, but instead of the expected nanoparticles we were able to grow dendritic 2-nm thick platinum sheets on the liposomes. Now, we have shown that it is possible to completely enclose the liposomes with sheeting to form porous platinum spheres, which show good structural stability as evidenced by their ability to survive the stresses of electron-microscopy sample preparation. Our goals were to control the synthesis of the platinized liposomes well enough to make uniform preparations of the coated individual liposomes and to develop the propulsion system for these nanovehicles a hydrogen-evolving artificial photosynthetic system in the liposomal bilayer that generates the pH gradient across the membrane that is necessary to drive the synthesis of ATP by ATP-synthase incorporated in the membrane. ATP produced would fuel the molecular motor (kinesin) attached to the vehicle, needing only light, storable ADP, phosphate, and an electron donor to be produced by ATP-synthase in the membrane. These research goals appear to be attainable, but growing the uniform preparations of the liposomes coated with dendritic platinum sheeting, a necessary accomplishment that would simplify the task of incorporating and verifying the photosynthetic function of the nanovehicle membrane, has proved to be difficult. The detailed understanding of the relative locations of surfactant and Pt in the liposomal bodies has also forced a change in the nanovehicle design strategies. Nevertheless, we have found no insurmountable obstacles to making these nanovehicles given a larger and longer term research effort. These nanovehicles could potentially respond to chemical gradients, light intensity, and field gradients, in the same manner that magnetic bacteria navigate. The cargo might include decision-making and guidance components, drugs and other biological and chemical agents, explosives, catalytic reactors, and structural materials.

More Details

Development of the Resin Infusion between Double Flexible Tooling process : assessment of the viability of in-mold coating and implementation of UV curing

Ruffner, Judith A.

As composites gain wider acceptance in all sectors of the economy, new methodologies must be developed to increase their cost effectiveness in manufacturing. The neoteric Resin Infusion between Double Flexible Tooling (RIDFT) process is undergoing modifications to improve its cost-effectiveness by developing methodologies for in-mold coating and the incorporation of UV curing. In-mold coating is desired by the composites industry since it eliminates the current paint process, which is not only laborious and time consuming, but expensive, and presents safety issues. Two methodologies (paint films and coinfusion) for implementing in-mold coating were investigated. It was demonstrated that thermoformable paint films could be used to produce coated RIDFTed components. Coinfusion was also successfully implemented. This work also investigated the feasibility of designing and incorporating a Cure on Demand system into the RIDFT process, using ultraviolet (UV) light for the curing of composite laminates. The objective was to develop a process for the RIDFT that would eliminate or reduce the inflexibility in the current production process, resulting in shortened production cycle times. UV-cured laminates were produced at a fraction of the time required to produce catalyst-cured laminates. Mechanical and material characterization tests were performed on each of the UV-cured laminates produced. The results were referenced against those obtained for laminates produced using a catalyst curing system to determine their overall quality. The UV-cured laminates, after undergoing tensile and rheological thermal tests, were found to have mechanical and material properties comparable, or in a few instances slightly better, than that of thermally cured laminates.

More Details

Climate change effects on international stability : a white paper

Boslough, Mark; Sprigg, James A.; Backus, George A.; Taylor, Mark A.; Mcnamara, Laura A.; Murphy, Kathryn; Malczynski, Leonard A.

This white paper represents a summary of work intended to lay the foundation for development of a climatological/agent model of climate-induced conflict. The paper combines several loosely-coupled efforts and is the final report for a four-month late-start Laboratory Directed Research and Development (LDRD) project funded by the Advanced Concepts Group (ACG). The project involved contributions by many participants having diverse areas of expertise, with the common goal of learning how to tie together the physical and human causes and consequences of climate change. We performed a review of relevant literature on conflict arising from environmental scarcity. Rather than simply reviewing the previous work, we actively collected data from the referenced sources, reproduced some of the work, and explored alternative models. We used the unfolding crisis in Darfur (western Sudan) as a case study of conflict related to or triggered by climate change, and as an exercise for developing a preliminary concept map. We also outlined a plan for implementing agents in a climate model and defined a logical progression toward the ultimate goal of running both types of models simultaneously in a two-way feedback mode, where the behavior of agents influences the climate and climate change affects the agents. Finally, we offer some ''lessons learned'' in attempting to keep a diverse and geographically dispersed group working together by using Web-based collaborative tools.

More Details

Integrated superhard and metallic coatings for MEMS : LDRD 57300 final report

De Boer, Maarten P.

Two major research areas pertinent to microelectromechanical systems (MEMS) materials and material surfaces were explored and developed in this 5-year PECASE LDRD project carried out by Professor Roya Maboudian and her collaborators at the University of California at Berkeley. In the first research area, polycrystalline silicon carbide (poly-SiC) was developed as a structural material for MEMS. This material is potentially interesting for MEMS because compared to polycrystalline silicon (polysilicon), the structural material in Sandia National Laboratories' SUMMiTV process, it may exhibit high wear resistance, high temperature operation and a high Young's modulus to density ratio. Each of these characteristics may extend the usefulness of MEMS in Sandia National Laboratories' applications. For example, using polycrystalline silicon, wear is an important issue in microengines, temperature degradation is of concern in thermal actuators and the characteristics of resonators can be extended with the same lithography technology. Two methods of depositing poly-SiC from a 1,3-disilabutane source at 650 C to 800 C by low-pressure chemical vapor deposition (LPCVD) were demonstrated. These include a blanket method in which the material is made entirely out of poly-SiC and a method to coat previously released and fabricated polysilicon MEMS. This deposition method is much simpler to use than previous methods such as high temperature LPCVD and atmospheric CVD. Other major processing issues that were surmounted in this LDRD with the poly-SiC film include etching, doping, and residual strain control. SiC is inert and as such is notoriously difficult to etch. Here, an HBr-based chemistry was demonstrated for the first time to make highly selective etching of SiC at high etch rates. Nitrogen was incorporated from an NH3 gas source, resulting in high conductivity films. Residual strain and strain gradient were shown to depend on deposition parameters, and can be made negative or positive. The tribology of poly-SiC was also investigated. Much improved release stiction and in-use stiction performance relative to polysilicon MEMS was found. Furthermore, wear of poly-SiC-coated MEMS was much reduced relative to uncoated polysilicon MEMS. A prototype baseline process flow now exists to produce poly-SiC in the Berkeley Sensor and Actuator (BSAC) facility. In the second project, galvanic deposition of metals onto polysilicon surfaces has been developed. The possible applications include reflective and optical coatings for optical MEMS, microswitches and microrelays for radio frequency MEMS and catalytic surfaces for microchemical reactors. In contrast to electroless deposition, galvanic displacement deposition requires no prior activation of the surface and is truly selective to silicon surfaces. This approach was used to deposit copper, gold and rhodium onto polysilicon MEMS. A method to study the adhesion of these metals to polysilicon was developed. It was also shown that the surfaces could be rendered hydrophobic by applying thiol-based self-assembled monolayers. This procedure also lowered their surface energy to {approx}3 {micro}J/m{sup 2}, consistent with monolayer-coated polysilicon MEMS.

More Details

Corrective measures evaluation work plan : Tijeras Arroyo Groundwater : revision 0

Collins, Sue S.

This document, which is prepared as directed by the Compliance Order on Consent (COOC) issued by the New Mexico Environment Department, outlines a process to evaluate remedial alternatives to identify a corrective measure for the Sandia National Laboratories Tijeras Arroyo Groundwater (TAG). The COOC provides guidance for implementation of a Corrective Measures Evaluation (CME) for TAG. This Work Plan documents an initial screening of remedial technologies and presents a list of possible remedial alternatives for those technologies that passed the screening. This Work Plan outlines the methods for evaluating these remedial alternatives and describes possible site-specific evaluation activities necessary to estimate remedy effectiveness and cost. These methods will be reported in the CME Report. This Work Plan outlines the CME Report, including key components and a description of the corrective measures process.

More Details

Corrective measures evaluation work plan : Technical Area V Groundwater : revision 0

Collins, Sue S.

This document, which is prepared as directed by the Compliance Order on Consent (COOC) issued by the New Mexico Environment Department, identifies and outlines a process to evaluate remedial alternatives to identify a corrective measure for the Sandia National Laboratories/New Mexico Technical Area (TA)-V Groundwater. The COOC provides guidance for implementation of a Corrective Measures Evaluation (CME) for the TA-V Groundwater. This Work Plan documents an initial screening of remedial technologies and presents a list of possible remedial alternatives for those technologies that passed the screening. This Work Plan outlines the methods for evaluating these remedial alternatives and describes possible site-specific evaluation activities necessary to estimate remedy effectiveness and cost. These methods will be reported in the CME Report. This Work Plan outlines the CME Report, including key components and a description of the corrective measures process.

More Details

Energy storage benefits and market analysis handbook : a study for the DOE Energy Storage Systems Program

Corey, Garth P.

This Guide describes a high level, technology-neutral framework for assessing potential benefits from and economic market potential for energy storage used for electric utility-related applications. In the United States use of electricity storage to support and optimize transmission and distribution (T&D) services has been limited due to high storage system cost and by limited experience with storage system design and operation. Recent improvement of energy storage and power electronics technologies, coupled with changes in the electricity marketplace, indicate an era of expanding opportunity for electricity storage as a cost-effective electric resource. Some recent developments (in no particular order) that drive the opportunity include: (1) states adoption of the renewables portfolio standard (RPS), which may increased use of renewable generation with intermittent output, (2) financial risk leading to limited investment in new transmission capacity, coupled with increasing congestion on some transmission lines, (3) regional peaking generation capacity constraints, and (4) increasing emphasis on locational marginal pricing (LMP).

More Details

Nano-electromechanical oscillators (NEMOs) for RF technologies

Friedmann, Thomas A.; Boyce, Brad L.; Czaplewski, David A.; Dyck, Christopher; Webster, James R.; Carton, Andrew J.; Carr, Dustin W.; Keeler, Bianca E.N.; Wendt, Joel R.; Tallant, David R.

Nano-electromechanical oscillators (NEMOs), capacitively-coupled radio frequency (RF) MEMS switches incorporating dissipative dielectrics, new processing technologies for tetrahedral amorphous carbon (ta-C) films, and scientific understanding of dissipation mechanisms in small mechanical structures were developed in this project. NEMOs are defined as mechanical oscillators with critical dimensions of 50 nm or less and resonance frequencies approaching 1 GHz. Target applications for these devices include simple, inexpensive clocks in electrical circuits, passive RF electrical filters, or platforms for sensor arrays. Ta-C NEMO arrays were used to demonstrate a novel optomechanical structure that shows remarkable sensitivity to small displacements (better than 160 fm/Hz {sup 1/2}) and suitability as an extremely sensitive accelerometer. The RF MEMS capacitively-coupled switches used ta-C as a dissipative dielectric. The devices showed a unipolar switching response to a unipolar stimulus, indicating the absence of significant dielectric charging, which has historically been the major reliability issue with these switches. This technology is promising for the development of reliable, low-power RF switches. An excimer laser annealing process was developed that permits full in-plane stress relaxation in ta-C films in air under ambient conditions, permitting the application of stress-reduced ta-C films in areas where low thermal budget is required, e.g. MEMS integration with pre-existing CMOS electronics. Studies of mechanical dissipation in micro- and nano-scale ta-C mechanical oscillators at room temperature revealed that mechanical losses are limited by dissipation associated with mechanical relaxation in a broad spectrum of defects with activation energies for mechanical relaxation ranging from 0.35 eV to over 0.55 eV. This work has established a foundation for the creation of devices based on nanomechanical structures, and outstanding critical research areas that need to be addressed for the successful application of these technologies have been identified.

More Details

NorthAm Fest : fostering a North American continent approach to countering terrorism

Moore, Judy H.; Whitley, John B.

On September 14-16, 2004, the Advanced Concepts Group of Sandia National Laboratories in conjunction with the University of Texas at El Paso and the North American Institute hosted a workshop (fest) designed to explore the concept of a North American continental approach to countering terrorism. The fest began with the basic premise that the successful defense of North America against the threat of terrorism will require close collaboration among the North American allies--Canada, Mexico and the U.S.--as well as a powerful set of information collection and analysis tools and deterrence strategies. The NorthAm Fest recast the notion of ''homeland defense'' as a tri-national effort to protect the North American continent against an evolving threat that respects no borders. This is a report of the event summarizing the ideas explored. The fest examined the uniqueness of dealing with terrorism from a tri-national North American viewpoint, the role and possible features of joint security systems, concepts for ideal continental security systems for North America, and the challenges and opportunities for such systems to become reality. The following issues were identified as most important for the advancement of this concept. (1) The three countries share a set of core values--democracy, prosperity and security--which form the basis for joint interactions and allow for the development of a culture of cooperation without affecting the sovereignty of the members. (2) The creation of a continental defensive strategy will require a set of strategic guidelines and that smart secure borders play a pivotal role. (3) Joint security systems will need to operate from a set of complementary but not identical policies and procedures. (4) There is a value in joint task forces for response and shared information systems for the prevention of attacks. (5) The private sector must play a critical role in cross-border interactions. Finally, participants envisioned a ''Tri-National Security Laboratory'' to develop and test new counter-terrorism technologies and processes. The fest was an important first step in developing a tri-national approach to continental security and very different approaches to countering terrorism were explored. Participants came to the conclusion that continental security would be easier to achieve if the focus were on broader security issues, such as transnational crime, with terrorism being only a part of the focus. A series of fledgling relationships were begun between individuals and organizations through which actions can occur. A first commitment is the publication by a set of participants representing the three countries of a joint paper outlining the elements of a Continental Security approach.

More Details

Nano electrode arrays for in-situ identification and quantification of chemicals in water

Yelton, W.G.; Pfeifer, Kent B.

The nano electrode arrays for in-situ identification and quantification of chemicals in water progress in four major directions. (1) We developed and engineering three nanoelectrode array designs which operate in a portable field mode or as distributed sensor network for water systems. (2) To replace the fragile glass electrochemical cells using in the lab, we design and engineered field-ready sampling heads that combine the nanoelectrode arrays with a high-speed potentiostat. (3) To utilize these arrays in a portable system we design and engineered a light weight high-speed potentiostat with pulse widths from 2 psec. to 100 msec. or greater. (4) Finally, we developed the parameters for an analytical method in low-conductivity solutions for Pb(II) detection, with initial studies for the analysis of As(III) and As(V) analysis in natural water sources.

More Details

The Common Geometry Module (CGM)

Tautges, Timothy J.

The Common Geometry Module (CGM) is a code library which provides geometry functionality used for mesh generation and other applications. This functionality includes that commonly found in solid modeling engines, like geometry creation, query and modification; CGM also includes capabilities not commonly found in solid modeling engines, like geometry decomposition tools and support for shared material interfaces. CGM is built upon the ACIS solid modeling engine, but also includes geometry capability developed beside and on top of ACIS. CGM can be used as-is to provide geometry functionality for codes needing this capability. However, CGM can also be extended using derived classes in C++, allowing the geometric model to serve as the basis for other applications, for example mesh generation. CGM is supported on Sun Solaris, SGI, HP, IBM, DEC, Linux and Windows NT platforms. CGM also includes support for loading ACIS models on parallel computers, using MPI-based communication. Future plans for CGM are to port it to different solid modeling engines, including Pro/Engineer or SolidWorks. CGM is being released into the public domain under an LGPL license; the ACIS-based engine is available to ACIS licensees on request.

More Details

Guidance on risk analysis and safety implications of a large liquefied natural gas (LNG) spill over water

Hightower, Marion M.; Morrow, Charles; Covan, John M.; Gritzo, Louis A.; Luketa, Anay; Tieszen, Sheldon R.; Wellman, Gerald W.; Irwin, Michael J.; Kaneshige, Michael; Melof, Brian M.

While recognized standards exist for the systematic safety analysis of potential spills or releases from LNG (Liquefied Natural Gas) storage terminals and facilities on land, no equivalent set of standards or guidance exists for the evaluation of the safety or consequences from LNG spills over water. Heightened security awareness and energy surety issues have increased industry's and the public's attention to these activities. The report reviews several existing studies of LNG spills with respect to their assumptions, inputs, models, and experimental data. Based on this review and further analysis, the report provides guidance on the appropriateness of models, assumptions, and risk management to address public safety and property relative to a potential LNG spill over water.

More Details

Arsenic in water treatment

Siegel, Malcolm

Sandia National Laboratories (SNL) is collaborating with the Awwa Research Foundation (AwwaRF) and WERC (A Consortium for Environmental Education and Technology Development) in a program for the development and testing of innovative technologies that have the potential to substantially reduce the costs associated with arsenic removal from drinking water. Sandia National Laboratories will administer contracts placed with AwwaRF and WERC to carry out bench scale studies and economic analyses/outreach activities, respectively. The elements of the AwwaRF program include (1) identification of new technologies, (2) proof-of-concept laboratory studies and, (3) a research program that will meet the other needs of small utilities by providing solutions to small utilities so that they may successfully meet the new arsenic MCL. WERC's activities will include development of an economic analysis tool for Pilot Scale Demonstrations and development of educational training and technical assistance tools. The objective of the Sandia Program is the field demonstration testing of innovative technologies. The primary deliverables of the Sandia program will be engineering analyses of candidate technologies; these will be contained in preliminary reports and final analysis reports. Projected scale-up costs will be generated using a cost model provided by WERC or another suitable model.

More Details

Ultra-lightweight telescope with MEMS adaptive optic for distortion correction

Spahn, Olga B.; Shaw, Michael; Dagel, Daryl; Mani, Seethambal; Sweatt, W.C.; Turner, Fawn R.; Grine, Alejandro J.; Adams, David P.; Resnick, Paul; Cowan, William D.

Recent world events have underscored the need for a satellite based persistent global surveillance capability. To be useful, the satellite must be able to continuously monitor objects the size of a person anywhere on the globe and do so at a low cost. One way to satisfy these requirements involves a constellation of satellites in low earth orbit capable of resolving a spot on the order of 20 cm. To reduce cost of deployment, such a system must be dramatically lighter than a traditional satellite surveillance system with a high spatial resolution. The key to meeting this requirement is a lightweight optics system with a deformable primary and secondary mirrors and an adaptive optic subsystem correction of wavefront distortion. This proposal is concerned with development of MEMS micromirrors for correction of aberrations in the primary mirror and improvement of image quality, thus reducing the optical requirements on the deployable mirrors. To meet this challenge, MEMS micromirrors must meet stringent criteria on their performance in terms of flatness, roughness and resolution of position. Using Sandia's SUMMIT foundry which provides the world's most sophisticated surface MEMS technology as well as novel designs optimized by finite element analysis will meet severe requirements on mirror travel range and accuracy.

More Details

Geologic investigation of Playa Lakes, Tonopah Test Range, Nevada : data report

Rautman, Christopher A.

Subsurface geological investigations have been conducted at two large playa lakes at the Tonopah Test Range in central Nevada. These characterization activities were intended to provide basic stratigraphic-framework information regarding the lateral distribution of ''hard'' and ''soft'' sedimentary materials for use in defining suitable target regions for penetration testing. Both downhole geophysical measurements and macroscopic lithilogic descriptions were used as a surrogate for quantitative mechanical-strength properties, although some quantitative laboratory strength measurements were obtained as well. Both rotary (71) and core (19) holes on a systematic grid were drilled in the southern half of the Main Lake; drill hole spacings are 300 ft north-south and 500-ft east-west. The drilled region overlaps a previous cone-penetrometer survey that also addressed the distribution of hard and soft material. Holes were drilled to a depth of 40 ft and logged using both geologic examination and down-hole geophysical surveying. The data identify a large complex of very coarse-grained sediment (clasts up to 8 mm) with interbedded finer-grained sands, silts and clays, underlying a fairly uniform layer of silty clay 6 to 12 ft thick. Geophysical densities of the course-grained materials exceed 2.0 g/cm{sup 2}, and this petrophysical value appears to be a valid discriminator of hard vs. soft sediments in the subsurface. Thirty-four holes, including both core and rotary drilling, were drilled on a portion of the much larger Antelope Lake. A set of pre-drilling geophysical surveys, including time-domain electromagnetic methods, galvanic resistivity soundings, and terrain-conductivity surveying, was used to identify the gross distribution of conductive and resistive facies with respect to the present lake outline. Conductive areas were postulated to represent softer, clay-rich sediments with larger amounts of contained conductive ground water. Initial drilling, consisting of cored drill holes to 100-ft (33-m) depth, confirmed both the specific surface geophysical measurements and the more general geophysical model of the subsurface lake facies. Good agreement of conductive regions with drill holes containing little to no coarse-grained sediments was observed, and vice-versa. A second phase of grid drilling on approximately 300-ft (100-m) centers was targeted a delineating a region of sufficient size containing essentially no coarse-grained ''hard'' material. Such a region was identified in the southwestern portion of Antelope Lake.

More Details

Compact fuel cell system utilizing a combination of hydrogen storage materials for optimized performance

Dedrick, Daniel E.; Chan, Jennifer P.

An entirely new class of light-weight reversible hydrides was recently discovered (the Ti-doped alanates)[1]. These NaAIH{sub 4}-based materials have demonstrated reversible hydrogen storage capacities of up to 5 wt%, nearly 4 times the gravimetrically density of commercial metal hydrides. For this reason, they have been considered a breakthrough for hydrogen storage in fuel cell vehicles. This project is the first to publish the use of alanates for the generation of electrical power and the first demonstration of a hydride-fueled elevated-temperature PEM Fuel Cell. Because the kinetics of hydrogen uptake and release by the alanate improves with elevated temperatures, novel concepts were tested for the purpose of developing a highly efficient stand-alone power system. A major focus of this work was on the modeling, design, construction and testing of an integrated fuel cell stack and hydrogen storage system that eliminates the need of complicated heat transfer systems and media. After extensive modeling efforts, a proof-of-concept system was built that employs an integrated fuel cell stack and hydride beds that balancing the generation of fuel cell waste heat with the endothermic release of hydrogen from the alanates. Our demonstration unit was capable of greater than one hour of operation on a single charge of hydrogen from the integrated 173 gram alanate bed. In addition, composite hydride materials with synergistic reaction heats were evaluated and tested to enhance the operational performance of the alanates. The composites provide a unique opportunity to utilize the heat produced from hydriding classic metal hydrides to improve both absorption and desorption rates of the alanates. A particular focus of the mixed storage materials work was to balance the thermodynamics and kinetics of the hydrides for start-up conditions. Modeling of the sorption properties proved invaluable in evaluating the optimum composition of hydrides. The modeling efforts were followed by full validation by experimental measurements. This project successfully completed the proof-of-concept goals and generated a powerful set of tools for optimizing the complete power-generation system. It has also created a new direction for hydrogen power generation as well the potential for new R&D based on this work.

More Details

New smart materials to address issues of structural health monitoring

Chaplya, Pavel M.

Nuclear weapons and their storage facilities may benefit from in-situ structural health monitoring systems. Appending health-monitoring functionality to conventional materials and structures has been only marginally successful. The purpose of this project was to evaluate feasibility of a new smart material that includes self-sensing health monitoring functions similar to that of a nervous system of a living organism. Reviews of current efforts in the fields of heath-monitoring, nanotechnology, micro-electromechanical systems (MEMS), and wireless sensor networks were conducted. Limitations of the current nanotechnology methods were identified and new approaches were proposed to accelerate the development of self-sensing materials. Wireless networks of MEMS sensors have been researched as possible prototypes of self-sensing materials. Sensor networks were also examined as enabling technologies for dense data collection techniques to be used for validation of numerical methods and material parameter identification. Each grain of the envisioned material contains sensors that are connected in a dendritic manner similar to networks of neurons in a nervous system. Each sensor/neuron can communicate with the neighboring grains. Both the state of the sensor (on/off) and the quality of communication signal (speed/amplitude) should indicate not only a presence of a structural defect but the nature of the defect as well. For example, a failed sensor may represent a through-grain crack, while a lost or degraded communication link may represent an inter-granular crack. A technology to create such material does not exist. While recent progress in the fields of MEMS and nanotechnology allows to envision these new smart materials, it is unrealistic to expect creation of self-sensing materials in the near future. The current state of MEMS, nanotechnology, communication, sensor networks, and data processing technologies indicates that it will take more than ten years for the technologies to mature enough to make self-sensing materials a reality. Nevertheless, recent advances in the field of nanotechnology demonstrate that nanotubes, nanorods, and nanoparticles of carbon, boron and other materials have remarkable mechanical and electrical properties. This would provide. for a plethora of potential applications including self-sensing materials. Record strength-to-weight ratios, ballistic conductivity, and sensing capabilities (i.e., piezo- resistance and piezoelectricity) have been reported for carbon nanotubes. The first transistors, sensors, and actuators have been made from the carbon nanotubes and other nanomaterials. However, nanomaterials are notoriously difficult to manipulate into useful geometries. Nano-manufacturing processes often produce bundles or random networks of nanostructured materials. Samples of the material are then manipulated with advanced microscopy tools to measure properties or to create a single device. This is a laborious and time consuming process. An often overlooked property of the manufactured nanotube bundles is their similarity to the dendritic structure of neural networks with a great quantity of interconnects that may serve as initiation sites for artificial neurons in a self-sensing material nervous system. To accelerate the development of self-sensing materials, future research should concentrate on naturally occurring dendritic nano-structures. While self-sensing materials with subgrain size sensors (scale of micrometers) remain in the realm of basic research, meso-scale (millimeters to centimeters) sensors and their networks are in the state of mature research and have begun to find their way into commercial applications. Macro-scale (centimeters to decimeters) sensors and their networks are commercially available from various sources. The majority of applications that employ sensor networks are driven by the needs of the Department of Defense. Widespread adaptation of sensor networks has been limited by, on one hand, the sensor's high cost of design, development, and deployment, and on the other hand, a lack of reliable long-term power sources. Solutions to both of these drawbacks require significant investments driven by real-life applications. Possible applications for sensor networks at Sandia National Laboratories include dense data collection techniques for validation of numerical methods and material parameter identification. For example, an array of distributed wireless macro-scale sensors can record the structural response of soils and reinforced concrete during explosive loading. Another example is an array of surface mounted micro-sensors that can record the modal response of nuclear weapon components. The collected data would be used to validate existing numerical codes and to identify new physical mechanisms to improve Sandia's computational models.

More Details
Results 87476–87500 of 99,299
Results 87476–87500 of 99,299