Publications

Results 83176–83200 of 96,771

Search results

Jump to search filters

Performance assessment methodology and preliminary results for low-level radioactive waste disposal in Taiwan

Arnold, Bill W.; Ho, Clifford K.; Mattie, Patrick D.; Jow, H.N.

Sandia National Laboratories (SNL) and Taiwan's Institute for Nuclear Energy Research (INER) have teamed together to evaluate several candidate sites for Low-Level Radioactive Waste (LLW) disposal in Taiwan. Taiwan currently has three nuclear power plants, with another under construction. Taiwan also has a research reactor, as well as medical and industrial wastes to contend with. Eventually the reactors will be decomissioned. Operational and decommissioning wastes will need to be disposed in a licensed disposal facility starting in 2014. Taiwan has adopted regulations similar to the US Nuclear Regulatory Commission's (NRC's) low-level radioactive waste rules (10 CFR 61) to govern the disposal of LLW. Taiwan has proposed several potential sites for the final disposal of LLW that is now in temporary storage on Lanyu Island and on-site at operating nuclear power plants, and for waste generated in the future through 2045. The planned final disposal facility will have a capacity of approximately 966,000 55-gallon drums. Taiwan is in the process of evaluating the best candidate site to pursue for licensing. Among these proposed sites there are basically two disposal concepts: shallow land burial and cavern disposal. A representative potential site for shallow land burial is located on a small island in the Taiwan Strait with basalt bedrock and interbedded sedimentary rocks. An engineered cover system would be constructed to limit infiltration for shallow land burial. A representative potential site for cavern disposal is located along the southeastern coast of Taiwan in a tunnel system that would be about 500 to 800 m below the surface. Bedrock at this site consists of argillite and meta-sedimentary rocks. Performance assessment analyses will be performed to evaluate future performance of the facility and the potential dose/risk to exposed populations. Preliminary performance assessment analyses will be used in the site-selection process and to aid in design of the disposal system. Final performance assessment analyses will be used in the regulatory process of licensing a site. The SNL/INER team has developed a performance assessment methodology that is used to simulate processes associated with the potential release of radionuclides to evaluate these sites. The following software codes are utilized in the performance assessment methodology: GoldSim (to implement a probabilistic analysis that will explicitly address uncertainties); the NRC's Breach, Leach, and Transport - Multiple Species (BLT-MS) code (to simulate waste-container degradation, waste-form leaching, and transport through the host rock); the Finite Element Heat and Mass Transfer code (FEHM) (to simulate groundwater flow and estimate flow velocities); the Hydrologic Evaluation of Landfill performance Model (HELP) code (to evaluate infiltration through the disposal cover); the AMBER code (to evaluate human health exposures); and the NRC's Disposal Unit Source Term -- Multiple Species (DUST-MS) code (to screen applicable radionuclides). Preliminary results of the evaluations of the two disposal concept sites are presented.

More Details

Development of LTCC smart channels for integrated chemical, temperature, and flow sensing

Ho, Clifford K.

This paper describes the development of 'smart' channels that can be used simultaneously as a fluid channel and as an integrated chemical, temperature, and flow sensor. The uniqueness of this device lies in the fabrication and processing of low-temperature co-fired ceramic (LTCC) materials that act as the common substrate for both the sensors and the channel itself. Devices developed in this study have employed rolled LTCC tubes, but grooves or other channel shapes can be fabricated depending on the application requirements. The chemical transducer is fabricated by depositing a conductive polymer 'ink' across a pair of electrodes that acts as a chemical resistor (chemiresistor) within the rolled LTCC tube. Volatile organic compounds passing through the tube are absorbed into the polymers, causing the polymers to reversibly swell and change in electrical resistance. The change in resistance is calibrated to the chemical concentration. Multiple chemiresistors have been integrated into a single smart channel to provide chemical discrimination through the use of different polymers. A heating element is embedded in the rolled tube to maintain a constant temperature in the vicinity of the chemical sensors. Thick-film thermistor lines are printed to monitor the temperature near the chemical sensor and at upstream locations to monitor the incoming ambient flow. The thermistors and heating element are used together as a thermal anemometer to measure the flow rate through the tube. Configurations using both surface-printed and suspended thermistors have been evaluated.

More Details

Measurement of the energy and power radiated by a pulsed blackbody x-ray source

Proposed for publication in Physical Review E.

Stygar, William A.; Leeper, Ramon J.; Mazarakis, Michael G.; McDaniel, Dillon H.; Mckenney, John M.; Mills, Jerry A.; Ruggles, Larry R.; Seamen, Johann F.; Simpson, Walter W.; Dropinski, Steven D.; Warne, Larry K.; York, Matthew W.; McGurn, John S.; Bryce, Edwin A.; Chandler, Gordon A.; Cuneo, M.E.; Johnson, William Arthur.; Jorgenson, Roy E.

We have developed a diagnostic system that measures the spectrally integrated (i.e. the total) energy and power radiated by a pulsed blackbody x-ray source. The total-energy-and-power (TEP) diagnostic system is optimized for blackbody temperatures between 50 and 350 eV. The system can view apertured sources that radiate energies and powers as high as 2 MJ and 200 TW, respectively, and has been successfully tested at 0.84 MJ and 73 TW on the Z pulsed-power accelerator. The TEP system consists of two pinhole arrays, two silicon-diode detectors, and two thin-film nickel bolometers. Each of the two pinhole arrays is paired with a single silicon diode. Each array consists of a 38 x 38 square array of 10-{micro}m-diameter pinholes in a 50-{micro}m-thick tantalum plate. The arrays achromatically attenuate the x-ray flux by a factor of {approx}1800. The use of such arrays for the attenuation of soft x rays was first proposed by Turner and co-workers [Rev. Sci. Instrum. 70, 656 (1999)RSINAK0034-674810.1063/1.1149385]. The attenuated flux from each array illuminates its associated diode; the diode's output current is recorded by a data-acquisition system with 0.6-ns time resolution. The arrays and diodes are located 19 and 24 m from the source, respectively. Because the diodes are designed to have an approximately flat spectral sensitivity, the output current from each diode is proportional to the x-ray power. The nickel bolometers are fielded at a slightly different angle from the array-diode combinations, and view (without pinhole attenuation) the same x-ray source. The bolometers measure the total x-ray energy radiated by the source and--on every shot--provide an in situ calibration of the array-diode combinations. Two array-diode pairs and two bolometers are fielded to reduce random uncertainties. An analytic model (which accounts for pinhole-diffraction effects) of the sensitivity of an array-diode combination is presented.

More Details

Helium bubble linkage and the transition to rapid He release in aging Pd tritide

Cowgill, D.F.

A model is presented for the linking of helium bubbles growing in aging metal tritides. Stresses created by neighboring bubbles are found to produce bubble growth toward coalescence. This process is interrupted by the fracture of ligaments between bubble arrays. The condition for ligament fracture percolates through the material to reach external surfaces, leading to material micro-cracking and the release of helium within the linked-bubble cluster. A comparison of pure coalescence and pure fracture mechanisms shows the critical HeM concentration for bubble linkage is not strongly dependent on details of the linkage process. The combined stress-directed growth and fracture process produces predictions for the onset of rapid He release and the He emission rate. Transition to this rapid release state is determined from the physical size of the linked-bubble clusters, which is calculated from dimensional invariants in classical percolation theory. The result is a transition that depends on material dimensions. The onset of bubble linkage and rapid He release are found to be quite sensitive to the bubble spacing distribution, which is log-normal for bubbles nucleated by self-trapping.

More Details

Operational characteristics and analysis of the immersed-Bz diode on RITS-3

Rovang, Dean C.; Johnston, Mark D.; Maenchen, John E.; Oliver, Bryan V.; Portillo, Salvador; Madrid, Elizabeth A.

The immersed-B{sub z} diode is being developed as a high-brightness, flash x-ray radiography source. This diode is a foil-less electron-beam diode with a long, thin, needle-like cathode inserted into the bore of a solenoid. The solenoidal magnetic field guides the electron beam emitted from the cathode to the anode while maintaining a small beam radius. The electron beam strikes a thin, high-atomic-number anode and produces bremsstrahlung. We report on an extensive series of experiments where an immersed-B{sub z} diode was fielded on the RITS-3 pulsed power accelerator, a 3-cell inductive voltage generator that produced peak voltages between 4 and 5 MV, {approx}140 kA of total current, and power pulse widths of {approx}50 ns. The diode is a high impedance device that, for these parameters, nominally conducts {approx}30 kA of electron beam current. Diode operating characteristics are presented and two broadly characterized operating regimes are identified: a nominal operating regime where the total diode current is characterized as classically bipolar and an anomalous impedance collapse regime where the total diode current is in excess of the bipolar limit and up to the full accelerator current. The operating regimes are approximately separated by cathode diameters greater than {approx}3 mm for the nominal regime and less than {approx} 3 mm for the anomalous impedance collapse regime. This report represents a compilation of data taken on RITS-3. Results from key parameter variations are presented in the main body of the report and include cathode diameter, anode-cathode gap, and anode material. Results from supporting parameter variations are presented in the appendices and include magnetic field strength, prepulse, pressure and accelerator variations.

More Details

Advancement in thermal interface materials for future high-performance electronic applications. Part 1

Emerson, John A.; Rightley, Michael J.; Wong, Chungnin C.; Huber, Dale L.; Jakaboski, Blake E.

As electronic assemblies become more compact and increase in processing bandwidth, escalating thermal energy has become more difficult to manage. The major limitation has been nonmetallic joining using poor thermal interface materials (TIM). The interfacial, versus bulk, thermal conductivity of an adhesive is the major loss mechanism and normally accounts for an order magnitude loss in conductivity per equivalent thickness. The next generation TIM requires a sophisticated understanding of material and surface sciences, heat transport at submicron scales, and the manufacturing processes used in packaging of microelectronics and other target applications. Only when this relationship between bond line manufacturing processes, structure, and contact resistance is well-understood on a fundamental level will it be possible to advance the development of miniaturized microsystems. This report examines using thermal and squeeze-flow modeling as approaches to formulate TIMs incorporating nanoscience concepts. Understanding the thermal behavior of bond lines allows focus on the interfacial contact region. In addition, careful study of the thermal transport across these interfaces provides greatly augmented heat transfer paths and allows the formulation of very high resistance interfaces for total thermal isolation of circuits. For example, this will allow the integration of systems that exhibit multiple operational temperatures, such as cryogenically cooled detectors.

More Details

Detection of carbon monoxide (CO) as a furnace byproduct using a rotating mask spectrometer

Pfeifer, Kent B.; Sinclair, Michael B.

Sandia National Laboratories, in partnership with the Consumer Product Safety Commission (CPSC), has developed an optical-based sensor for the detection of CO in appliances such as residential furnaces. The device is correlation radiometer based on detection of the difference signal between the transmission spectrum of the sample multiplied by two alternating synthetic spectra (called Eigen spectra). These Eigen spectra are derived from a priori knowledge of the interferents present in the exhaust stream. They may be determined empirically for simple spectra, or using a singular value decomposition algorithm for more complex spectra. Data is presented on the details of the design of the instrument and Eigen spectra along with results from detection of CO in background N{sub 2}, and CO in N{sub 2} with large quantities of interferent CO{sub 2}. Results indicate that using the Eigen spectra technique, CO can be measured at levels well below acceptable limits in the presence of strongly interfering species. In addition, a conceptual design is presented for reducing the complexity and cost of the instrument to a level compatible with consumer products.

More Details

International perceptions of US nuclear policy

Stanley, Elizabeth A.

The report presents a summary of international perceptions and beliefs about US nuclear policy, focusing on four countries--China, Iran, Pakistan and Germany--chosen because they span the spectrum of states with which the United States has relationships. A paradox is pointed out: that although the goal of US nuclear policy is to make the United States and its allies safer through a policy of deterrence, international perceptions of US nuclear policy may actually be making the US less safe by eroding its soft power and global leadership position. Broadly held perceptions include a pattern of US hypocrisy and double standards--one set for the US and its allies, and another set for all others. Importantly, the US nuclear posture is not seen in a vacuum, but as one piece of the United States behavior on the world stage. Because of this, the potential direct side effects of any negative international perceptions of US nuclear policy can be somewhat mitigated, dependent on other US policies and actions. The more indirect and long term relation of US nuclear policy to US international reputation and soft power, however, matters immensely to successful multilateral and proactive engagement on other pressing global issues.

More Details

ITER first wall Module 18 - The US effort

Fusion Engineering and Design

Nygren, Richard E.; Ulrickson, M.A.; Tanaka, T.J.; Youchison, Dennis L.; Lutz, Thomas J.; Bullock, J.; Hollis, K.J.

The US will supply outboard Module 18 for the International Thermonuclear Experimental Reactor. This module, radially thinner than other modules with a "nose" that curves radially outward to mate with the divertor, has the potential for high electromagnetic (EM) loads from vertical displacement events and high heat loads. The 316LN-IG shield block and first wall (FW) panels must be slotted to mitigate the EM loads and progress in developing the design is summarized. The FW has beryllium (Be) armor joined to a water-cooled CuCrZr heat sink with embedded 316LN-IG cooling channels. The US Team is considering possible fabrication methods as the design develops. Brief results of high heat flux experiments at Sandia on mockups with plasma-sprayed Be armor prepared at Los Alamos National Laboratory are noted. © 2005 Elsevier B.V. All rights reserved.

More Details

Two-dimensional implicit time-dependent calculations on adaptive unstructured meshes with time evolving boundaries

International Journal for Numerical Methods in Fluids

Lin, Paul T.; Baker, Timothy J.; Martinelli, Luigi; Jameson, Antony

An implicit multigrid-driven algorithm for two-dimensional incompressible laminar viscous flows has been coupled with a solution adaptation method and a mesh movement method for boundary movement. Time-dependent calculations are performed implicitly by regarding each time step as a steady-state problem in pseudo-time. The method of artificial compressibility is used to solve the flow equations. The solution mesh adaptation method performs local mesh refinement using an incremental Delaunay algorithm and mesh coarsening by means of edge collapse. Mesh movement is achieved by modeling the computational domain as an elastic solid and solving the equilibrium equations for the stress field. The solution adaptation method has been validated by comparison with experimental results and other computational results for low Reynolds number flow over a shedding circular cylinder. Preliminary validation of the mesh movement method has been demonstrated by a comparison with experimental results of an oscillating airfoil and with computational results for an oscillating cylinder. Copyright © 2005 John Wiley & Sons, Ltd.

More Details

A packed microcolumn approach to a cell-based biosensor

Sensors and Actuators, B: Chemical

Flemming, Jeb H.; Baca, Helen K.; Werner-Washburne, Margaret; Brozik, Susan M.; López, Gabriel P.

We present and evaluate a new approach to cell immobilization for use in cell-based biosensors. We have fabricated a microfluidic channel using poly(dimethylsiloxane) (PDMS) with cell entrapment posts for the gentle packing and immobilization of yeast cells. This method of immobilization allows for a density of metabolically active cells greater than 8.0 × 106 cells/mm3. The packed microcolumn approach addresses simple diffusional limitations inherent in traditional suspension and membrane entrapment techniques. By utilizing genetically engineered whole cells, rather then cellular components, the sensor is capable of detecting and responding to a wide range of biologically active compounds. In this study, Saccharomyces cerevisiae was genetically engineered to produce yellow fluorescent protein (YFP) when exposed to galactose. Fluorescence response of packed cells (G 1 phase) to galactose required 40% longer than the fluorescent response of cells grown in suspension. To address concerns of long-term viability (>60 days) and cell overgrowth, stationary phase cells were also tested in the microfluidic channel. Response time required approximately 50% longer than non-stationary phase cells packed inside the microfluidic channel. Additionally, cellular response as a function of the target analyte concentration was investigated and response time versus analyte concentration is reported. This report demonstrates proof-of-concept of using protein expression-based biosensors, based upon a packed, microcolumn architecture, as a dependable long-term storage platform. © 2005 Elsevier B.V. All rights reserved.

More Details

Effects of evolving surface morphology on yield during focused ion beam milling of carbon

Applied Surface Science

Adams, D.P.; Mayer, T.M.; Vasile, M.J.; Archuleta, Kim A.

We investigate evolving surface morphology during focused ion beam bombardment of C and determine its effects on sputter yield over a large range of ion dose (10 17 -10 19 ions/cm 2 ) and incidence angles (Θ = 0-80°). Carbon bombarded by 20 keV Ga + either retains a smooth sputtered surface or develops one of two rough surface morphologies (sinusoidal ripples or steps/terraces) depending on the angle of ion incidence. For conditions that lead to smooth sputter-eroded surfaces there is no change in yield with ion dose after erosion of the solid commences. However, for all conditions that lead to surface roughening we observe coarsening of morphology with increased ion dose and a concomitant decrease in yield. A decrease in yield occurs as surface ripples increase wavelength and, for large Θ, as step/terrace morphologies evolve. The yield also decreases with dose as rippled surfaces transition to have steps and terraces at Θ = 75°. Similar trends of decreasing yield are found for H 2 O-assisted focused ion beam milling. The effects of changing surface morphology on yield are explained by the varying incidence angles exposed to the high-energy beam. © 2005 Elsevier B.V. All rights reserved.

More Details
Results 83176–83200 of 96,771
Results 83176–83200 of 96,771