Publications

Results 83201–83225 of 96,771

Search results

Jump to search filters

Diagnosing dynamic hohlraums with K-shell spectroscopy of embedded tracer layers

AIP Conference Proceedings

Apruzese, J.P.; Clark, R.W.; Kepple, P.C.; Davis, J.; Sanford, T.W.L.; Nash, Thomas J.; Mock, R.C.; Peterson, D.L.

Diagnostic tracer layers of Al and/or Mg have been embedded in Dynamic Hohlraum targets which are imploded on Sandia National Laboratories' Z generator by surrounding them with nested arrays of tungsten wires. The K-shell lines of these elements are observed, usually in absorption, in both time-resolved and time-integrated spectra. The radiation physics of line formation in this environment is well understood and captured with a detailed model. A χ 2 fit to the measured line intensities is used in conjunction with the model to determine the hohlraums' intrinsic properties. Among other features, our analyses find no evidence of intrinsic top-bottom asymmetry in the Dynamic Hohlraums. © 2006 American Institute of Physics.

More Details

Implosion dynamics and spectroscopy of X-pinches and wire arrays with doped Al wires on the UNR 1MA Z-pinch generator

AIP Conference Proceedings

Safronova, Alla; Kantsyrev, Victor; Esaulov, Audrey; Fedin, Dmitry; Ouart, Nicholas; Yilmaz, Fatih; Osborne, Glenn; Nalajala, Vidya; Pokala, Shivaji; Shrestha, Ishor; Astanovitsky, Alexey; Batie, Steve; Legalloudec, Bruno; Cowan, Tom; Jones, Brent M.; Coverdale, Christine A.; Deeney, Christopher D.; Lepell, David; Gradel, Josh

The study of implosion dynamics and spectroscopy of X-pinches and wire arrays with Al wires alloyed or coated with other near-Z or higher-Z materials is discussed. In particular, X-pinches from two combined Al 5056 and Mo wires and composed from four identical Al 5056 (5%Mg) wires and Cu clad Al (90% Al and 10%Cu) are studied. In addition, wire arrays with Alumel wires (95% Ni and 5% Al) and with Al 5056 wires (uncoated) and coated with 5% NaF are investigated. Spatially-resolved and integrated x-ray spectral data and time integrated and time-gated pinhole x-ray images accumulated in these X-pinch and wire array experiments on the UNR 1MA Zebra generator are analyzed. Modeling of K-shell radiation from Mg provides K-shell plasma parameters for all Al 5056 wire experiments, whereas modeling of L-shell radiation from Ni, Cu, and Mo provide parameters for L-shell plasmas. The importance of using different materials or dopants for understanding of implosion dynamics of different wire materials is illustrated. © 2006 American Institute of Physics.

More Details

Observations of the cellular structure of fuel-air detonations

Combustion and Flame

Stamps, Douglas W.; Slezak, Scott E.; Tieszen, Sheldon R.

Detonation cell widths, which provide a measure of detonability of a mixture, were measured for hydrocarbon-air and hydrogen-air-diluent mixtures. Results were obtained from a 0.43-m-diameter, 13.1-m-long heated detonation tube with an initial pressure of 101 kPa and an initial temperature between 25 and 100°C. The cell widths of simple cyclic hydrocarbons are somewhat smaller than those of comparable straight-chain alkanes. Cyclic hydrocarbons tested generally had similar cell sizes despite differences in degree of bond saturation, bond strain energy, oxygen substitution, and chemical structure. There was a significant reduction in the cell width of octane, a straight-chain alkane, when it was mixed with small quantities of hexyl nitrate. The effect of a diluent, such as steam and carbon dioxide, on the cell width of a hydrogen-air mixture is shown over a wide range of mixture stoichiometries. The data illustrate the effects of initial temperature and pressure on the cell width when compared to previous studies. Not only is carbon dioxide more effective than steam at increasing the mixture cell width, but also its effectiveness increases relative to that of steam with increasing concentrations. The detonability limits, which are dependent on the facility geometry and type of initiator used in this study, were measured for fuel-lean and fuel-rich hydrogen-air mixtures and stoichiometric hydrogen-air mixtures diluted with steam. The detonability limits are nominally at the flammability limits for hydrogen-air mixtures. The subcellular structure within a fuel-lean hydrogen-air detonation cell was recorded using a sooted foil. The uniform fine structure of the self-sustained transverse wave and the irregular structure of the overdriven lead shock wave are shown at the triple point path that marks the boundary between detonation cells.

More Details

Implications of application usage characteristics for collective communication offload

International Journal of High Performance Computing and Networking

Brightwell, Ronald B.; Goudy, Sue P.; Rodrigues, Arun; Underwood, Keith D.

The global, synchronous nature of some collective operations implies that they will become the bottleneck when scaling to hundreds of thousands of nodes. One approach improves collective performance using a programmable network interface to directly implement collectives. While these implementations improve micro-benchmark performance, accelerating applications will require deeper understanding of application behaviour. We describe several characteristics of applications that impact collective communication performance. We analyse network resource usage data to guide the design of collective offload engines and their associated programming interfaces. In particular, we provide an analysis of the potential benefit of non-blocking collective communication operations for MPI. © 2006 Inderscience Enterprises Ltd.

More Details

Stability and reactivity of n 2 o in supercritical water

Combustion Science and Technology

Rice, Steven F.

The results of experiments examining the thermal decomposition of N 2 O and its reactivity with methane in supercritical water at approximately 500°C and 30 MPa are presented. The rate of thermal decomposition is observed to be close to the rate predicted by extrapolating an Arrhenius expression from the literature that has been shown to be valid at 750°C and 1.0 MPa. The observed first-order rate constant at 500°C is 9.4 × 10 -6 s -1 . There is no significant effect on N 2 O stability due to the presence of supercritical water relative to ambient pressure. Measurements exploring the conversion rate of methane in the presence of N 2 O reveal that simple oxidation chemistry competes with polymerization. The data suggest that much of the carbon in the system is converted to (CH 2 ) n oligomers that separates from the supercritical phase. A detailed kinetic mechanism is used to explore characteristics of these competing processes.

More Details

Comparison of direct numerical simulation of lean premixed methane-air flames with strained laminar flame calculations

Combustion and Flame

Hawkes, Evatt R.; Chen, Jacqueline H.

Direct numerical simulation (DNS) with complex chemistry was used to study statistics of displacement and consumption speeds in turbulent lean premixed methane-air flames. The main focus of the study is an evaluation of the extent to which a turbulent flame in the thin reaction zones regime can be described by an ensemble of strained laminar flames. Conditional averages with respect to strain for displacement and consumption speeds are presented over a wide range of strain typically encountered in a turbulent flame, compared with previous studies that either made local pointwise comparisons or conditioned the data on small strain and curvature. The conditional averages for positive strains are compared with calculated data from two different canonical strained laminar configurations to determine which is the optimal representation of a laminar flame structure embedded in a turbulent flame: the reactant-to-product (R-to-P) configuration or the symmetric twin flame configuration. Displacement speed statistics are compared for the progress-variable isosurface of maximum reaction rate and an isosurface toward the fresh gases, which are relevant for both modeling and interpretation of experiment results. Displacement speeds in the inner reaction layer are found to agree very well with the laminar R-to-P calculations over a wide range of strain for higher Damköhler number conditions, well beyond the regime in which agreement was expected. For lower Damköhler numbers, a reduced response to strain is observed, consistent with previous studies and theoretical expectations. Compared with the inner layer, broader and shifted probability density functions (PDFs) of displacement speed were observed in the fresh gases, and the agreement with the R-to-P calculations deteriorated. Consumption speeds show a poorer agreement with strained laminar calculations, which is attributed to multidimensional effects and a more attenuated unsteady response to strain fluctuations; however, they also show less departure from the unstrained laminar value, suggesting that detailed modeling of this quantity may not be critical for the conditions considered. For all quantities investigated, including CO production, the R-to-P laminar configuration provides an improved description relative to the twin flame configuration, which predicts qualitatively incorrect trends and overestimates extinction.

More Details

Radiative properties of asymmetric and symmetric X-pinches with two and four wires recently produced on the UNR 1 MA Zebra generator

Journal of Quantitative Spectroscopy and Radiative Transfer

Kantsyrev, Victor; Safronova, A.; Ivanov, V.; Fedin, D.; Mancini, R.; Astanovitsky, A.; LeGalloudec, B.; Batie, S.; Brown, D.; Nalajala, V.; Shrestha, I.; Pokala, S.; Ouart, N.; Yilmaz, F.; Clinton, A.; Johnson, M.; Cowan, T.; Jones, Brent M.; Coverdale, Christine A.; Deeney, C.; LePell, P.D.; Jobe, D.; Nielson, D.

Experimental results of studies of the 1 MA X-pinch X-ray source in a wide spectral region are overviewed. Implosion dynamics and radiative properties of various X-pinches were studied by spatially and time-resolved X-ray and optical diagnostics. In particular, dynamics of spatial and temporal developments of the structure of X-ray emitting regions (1-5 keV), temporal characteristics of X-ray pulses, X-ray radiation outputs and electron beam characteristics from symmetric and asymmetric Mo, Cu, and combined asymmetric Mo/W X-pinches with two or four wires were studied. The mechanisms of X-ray multiburst generation are discussed. The future applications of the high-current X-pinch as a 5-10 kJ sub-keV-10 keV radiation driver are considered. © 2005 Elsevier Ltd. All rights reserved.

More Details

Numerical modeling and experimental measurements of water spray impact and transport over a cylinder

International Journal of Multiphase Flow

Yoon, S.S.; Desjardin, P.E.; Presser, C.; Hewson, John C.; Avedisian, C.T.

This study compares experimental measurements and numerical simulations of liquid droplets over heated (to a near surface temperature of 423 K) and unheated cylinders. The numerical model is based on an unsteady Reynolds-averaged Navier-Stokes (RANS) formulation using a stochastic separated flow (SSF) approach for the droplets that includes submodels for droplet dispersion, heat and mass transfer, and impact on a solid surface. The details of the droplet impact model are presented and the model is used to simulate water spray impingement on a cylinder. Computational results are compared with experimental measurements using phase Doppler interferometry (PDI). Overall, good agreement is observed between predictions and experimental measurements of droplet mean size and velocity downstream of the cylinder. © 2005 Elsevier Ltd. All rights reserved.

More Details

Obtaining identical results on varying numbers of processors in domain decomposed particle Monte Carlo simulations

Lecture Notes in Computational Science and Engineering

Gentile, N.A.; Kalos, Malvin; Brunner, Thomas A.

Domain decomposed Monte Carlo codes, like other domain-decomposed codes, are difficult to debug. Domain decomposition is prone to error, and interactions between the domain decomposition code and the rest of the algorithm often produces subtle bugs. These bugs are particularly difficult to find in a Monte Carlo algorithm, in which the results have statistical noise. Variations in the results due to statistical noise can mask errors when comparing the results to other simulations or analytic results. If a code can get the same result on one domain as on many, debugging the whole code is easier. This reproducibility property is also desirable when comparing results done on different numbers of processors and domains. We describe how reproducibility, to machine precision, is obtained on different numbers of domains in an Implicit Monte Carlo photonics code.

More Details

Development of a silicon calorimeter for dosimetry applications in a water-moderated reactor

ASTM Special Technical Publication

Luker, Spencer M.; Griffin, Patrick J.; Depriest, Kendall D.; King, Donald B.; Naranjo, Gerald E.; Suo-Anttila, Ahti J.; Kellner, Ned

High fidelity active dosimetry in the mixed neutron/gamma field of a research reactor is a very complex issue. For passive dosimetry applications, the use of activation foils addresses the neutron environment while the use of low neutron response CaF2:Mn thermoluminescent dosimeters (TLDs) addresses the gamma environment. While radiation-hardened diamond photoconducting detectors (PCD) have been developed that provide a very precise fast response (picosecond) dosimeter and can provide a time-dependent profile for the radiation environment, the mixed field response of the PCD is still uncertain and this interferes with the calibration of the PCD response. In order to address the research reactor experimenter's need for a dosimeter that reports silicon dose and dose rate at a test location during a pulsed reactor operation, a silicon calorimeter has been developed. This dosimeter can be used by itself to provide a dose in rad(Si) up to a point in a reactor pulsed operation, or, in conjunction with the diamond PCD, to provide a dose rate. This paper reports on the development, testing, and validation of this silicon calorimeter for applications in water-moderated research reactors. Copyright © 2006 by ASTM International.

More Details

Investigation of regimes of wire array implosion on the 1 MA Zebra accelerator

Physics of Plasmas

Ivanov, V.V.; Kantsyrev, V.L.; Sotnikov, V.I.; Fedin, D.A.; Astanovitskiy, A.L.; Le Galloudec, B.; Nalajala, V.; Shrestha, I.; Cowan, T.E.; Jones, Brent M.; Coverdale, Christine A.; Deeney, C.; LePell, P.D.

Implosion of wire arrays was investigated at the 1 MA Zebra accelerator by multiframe laser probing and gated x-ray self-emission diagnostics. Different regimes of implosion were observed in Al and Cu wire arrays. Implosion of Al loads with masses of 33-37 μgcm produces a dense pinch 1-1.5 mm in diameter. Strong instabilities are observed in the Z pinch at the time of stagnation. Implosion of "overmassed" loads produces a plasma column 3-4 mm in diameter with a core. The plasma column does not collapse during the x-ray pulse. The core of the plasma column is not subjected to the kink instability and transforms to a chain of dense spots in the later stage. Different regimes of implosion were observed in Al 8×15 μm loads presumably due to variations in the current pulse and load conditions. Observed regimes are compared to three-dimensional hybrid simulation of ideal and nonideal magnetohydrodynamics modes of implosion. © 2006 American Institute of Physics.

More Details

Fabrication of phosphor micro-grids using proton beam lithography

Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms

Auzelyte, V.; Elfman, M.; Kristiansson, P.; Pallon, J.; Wegdén, M.; Nilsson, C.; Malmqvist, K.; Doyle, Barney L.; Rossi, P.; Hearne, Sean J.; Provencio, P.N.; Antolak, Arlyn J.

A new nuclear microscopy technique called ion photon emission microscopy or IPEM was recently invented. IPEM allows analysis involving single ions, such as ion beam induced charge (IBIC) or single event upset (SEU) imaging using a slightly modified optical microscope. The spatial resolution of IPEM is currently limited to more than 10 μm by the scattering and reflection of ion-induced photons, i.e. light blooming or spreading, in the ionoluminescent phosphor layer. We are developing a "Microscopic Gridded Phosphor" (also called Black Matrix) where the phosphor nanocrystals are confined within the gaps of a micrometer scale opaque grid, which limits the amount of detrimental light blooming. MeV-energy proton beam lithography is ideally suited to lithographically form masks for the grid because of high aspect ratio, pattern density and sub-micron resolution of this technique. In brief, the fabrication of the grids was made in the following manner: (1) a MeV proton beam focused to 1.5-2 μm directly fabricated a matrix of pillars in a 15 μm thick SU-8 lithographic resist; (2) 7:1 aspect ratio pillars were then formed by developing the proton exposed area; (3) Ni (Au) was electrochemically deposited onto Cu-coated Si from a sulfamate bath (or buffered CN bath); (4) the SU-8 pillars were removed by chemical etching; finally (5) the metal micro-grid was freed from its substrate by etching the underlying Cu layer. Our proposed metal micro-grids promise an order-of-magnitude improvement in the resolution of IPEM. © 2005 Elsevier B.V. All rights reserved.

More Details

Evaluation of the corrosivity of dust deposited on waste packages at Yucca Mountain, Nevada

Materials Research Society Symposium Proceedings

Bryan, Charles R.; Jarek, Russell L.; Wolery, Thomas; Shields, David; Sutton, Mark; Hardin, Ernest; Barr, Deborah

Potentially corrosive brines can form during post-closure by deliquescence of salt minerals in dust deposited on the surface of waste packages at Yucca Mountain during operations and the pre-closure ventilation period. Although thermodynamic modeling and experimental studies of brine deliquescence indicates that brines are likely to form, they will be nitrate-rich and non-corrosive. Processes that modify the brines following deliquescence are beneficial with respect to inhibition of corrosion. For example, acid degassing (HCl, HNO3) could dry out brines, but kinetic limitations are likely to limit the effect to increasing their passivity by raising the pH and increasing the NO3/Cl ratio. Predicted dust quantities and maximum brine volumes on the waste package surface are small, and physical isolation of salt minerals in the dust may inhibit formation of eutectic brines and decrease brine volumes. If brines do contact the WP surface, small droplet volumes and layer thicknesses do not support development of diffusive gradients necessary for formation on separate anodic-cathodic zones required for localized corrosion. Finally, should localized corrosion initiate, corrosion product buildup will stifle corrosion, by limiting oxygen access to the metal surface, by capillary retention of brine in corrosion product porosity, or by consumption of brine components (Cl-). © 2006 Materials Research Society.

More Details

Thin plate gap bridging study for Nd:YAG pulsed laser lap welds

Norris, J.T.; Roach, R.A.; Fuerschbach, Phillip W.; Bernal, John E.

In an on going study of gap bridging for thin plate Nd:YAG laser lap welds, empirical data, high speed imaging, and computer modeling were utilized to better understand surface physics attributed to the formation and solidification of a weld pool. Experimental data indicates better gap bridging can be achieved through optimized laser parameters such as pulse length, duration, and energy. Long pulse durations at low energies generating low peak powers were found to create the highest percent of gap bridging ability. At constant peak power, gap-bridging ability was further improved by using a smaller spot diameter resulting in higher irradiances. Hence, welding in focus is preferable for bridging gaps. Gas shielding was also found to greatly impact gap-bridging ability. Gapped lap welds that could not be bridged with UHP Argon gas shielding, were easily bridged when left unshielded and exposed to only air. Incident weld angle and joint offset were also investigated for their ability to improve gap bridging. Optical filters and brightlight surface illumination enabled high-speed imaging to capture the fluid dynamics of a forming and solidifying weld pool. The effects of various laser parameters and the weld pool's interaction with the laser beam could also be observed utilizing the high-speed imaging. The work described is used to develop and validate a computer model with improved weld pool physics. Finite element models have been used to derive insight into the physics of gap bridging. The dynamics of the fluid motion within the weld pool in conjunction with the free surface physics have been the primary focus of the modeling efforts. Surface tension has been found to be a more significant factor in determining final weld pool shape than expected.

More Details

ALEGRA-HEDP validation strategy

Trucano, Timothy G.

This report presents a initial validation strategy for specific SNL pulsed power program applications of the ALEGRA-HEDP radiation-magnetohydrodynamics computer code. The strategy is written to be (1) broadened and deepened with future evolution of particular specifications given in this version; (2) broadly applicable to computational capabilities other than ALEGRA-HEDP directed at the same pulsed power applications. The content and applicability of the document are highly constrained by the R&D thrust of the SNL pulsed power program. This means that the strategy has significant gaps, indicative of the flexibility required to respond to an ongoing experimental program that is heavily engaged in phenomena discovery.

More Details

Low-temperature hetero-epitaxial growth of Ge on Si by high density plasma chemical vapor deposition

Materials Research Society Symposium Proceedings

Carroll, Malcolm; Sheng, Josephine; Verley, Jason V.

Demand for integration of optoelectronic functionality (e.g., optical interconnects) with silicon complementary metal oxide semiconductor (CMOS) technology has for many years motivated the investigation of low temperature (∼450°C) germanium deposition processes that may be integrated in to the back-end CMOS process flow. A common challenge to improving the germanium quality is the thermal budget of the in-situ bake, which is used to reduce defect forming oxygen and carbon surface residues [1, 2]. Typical cleaning temperatures to remove significant concentrations of oxygen and carbon have been reported to be approximately 750°C for thermal hydrogen bakes in standard chemical vapor deposition chambers [3]. Germanium device performance using lower peak in-situ cleans (i.e., ∼450°C) has been hampered by additional crystal defectivity, although epitaxy is possible with out complete removal of oxygen and carbon at lower temperatures [4]. Plasma enhanced chemical vapor deposition (PECVD) is used to reduce the processing temperature. Hydrogen plasma assisted in-situ surface preparation of epitaxy has been shown to reduce both carbon and oxygen concentrations and enable epitaxial growth at temperatures as low as ∼150°C [5,6]. The hydrogen is believed to help produce volatile Si-O and H2O species in the removal of oxygen, although typically this is not reported to occur rapidly enough to completely clear the surface of all oxygen until ∼550°C. In this paper, we describe the use of an in-situ argon/germane high density plasma to help initiate germanium epitaxy on silicon using a peak temperature of approximately 460°C, Germanium is believed to readily break Si-O bonds to form more volatile Ge-O [7-9], therefore, argon/germane plasmas offer the potential to reduce the necessary in-situ clean temperature while obtaining similar results as hydrogen in-situ cleans. To the authors knowledge this report is also the first demonstration of germanium epitaxy on silicon using this commercially available high density plasma chamber configuration instead of, for example, remote or electron cyclotron resonance configurations. © 2006 Materials Research Society.

More Details

Assessment of the potential for karst in the Rustler Formation at the WIPP site

Lorenz, John C.

This report is an independent assessment of the potential for karst dissolution in evaporitic strata of the Rustler Formation at the Waste Isolation Pilot Plant (WIPP) site. Review of the available data suggests that the Rustler strata thicken and thin across the area in depositional patterns related to lateral variations in sedimentary accommodation space and normal facies changes. Most of the evidence that has been offered for the presence of karst in the subsurface has been used out of context, and the different pieces are not mutually supporting. Outside of Nash Draw, definitive evidence for the development of karst in the Rustler Formation near the WIPP site is limited to the horizon of the Magenta Member in drillhole WIPP-33. Most of the other evidence cited by the proponents of karst is more easily interpreted as primary sedimentary structures and the localized dissolution of evaporitic strata adjacent to the Magenta and Culebra water-bearing units. Some of the cited evidence is invalid, an inherited baggage from studies made prior to the widespread knowledge of modern evaporite depositional environments and prior to the existence of definitive exposures of the Rustler Formation in the WIPP shafts. Some of the evidence is spurious, has been taken out of context, or is misquoted. Lateral lithologic variations from halite to mudstone within the Rustler Formation under the WIPP site have been taken as evidence for the dissolution of halite such as that seen in Nash Draw, but are more rationally explained as sedimentary facies changes. Extrapolation of the known karst features in Nash Draw eastward to the WIPP site, where conditions are and have been significantly different for half a million years, is unwarranted. The volumes of insoluble material that would remain after dissolution of halite would be significantly less than the observed bed thicknesses, thus dissolution is an unlikely explanation for the lateral variations from halite to mudstone and siltstone. Several surficial depressions at WIPP, suggested to be sinkholes, do not have enough catchment area to form a sinkhole, and holes drilled to investigate the subsurface strata do not support a sinkhole interpretation. Surface drainage across the WIPP site is poorly developed because it has been disrupted by migrating sand dunes and because precipitation is not focused by defined catchment areas in this region of low precipitation and low-dip bedding, not because it has been captured by sinkholes. There are no known points of discharge from the Rustler Formation at WIPP that would indicate the presence of a subsurface karst drainage system. The existing drillholes across the WIPP site, though small in diameter, are sufficient to assess the probability of karst development along the horizontal fractures that are common in the Rustler Formation, and the area of investigation has been augmented significantly by the mapping of four large-diameter shafts excavated into the WIPP repository. The general absence of dissolution, karsting, and related conduits is corroborated by the pumping tests which have interrogated large volumes of the Rustler Formation between drillholes. Diffusion calculations suggest that separate isotopic signatures for the water found in the fractures and the water found in the pores of the matrix rock between fractures are unlikely, thus the isotopic evidence for ancient Rustler formation waters is valid. Geophysical techniques show a number of anomalies, but the anomalies do not overlap to portray consistent and mutually supporting patterns that can be definitively related to karst void space at any given location. The coincidence of the Culebra and Magenta potentiometric heads between Nash Draw and the WIPP site is the inevitable intersection of two non-parallel surfaces rather than an indication of karst-related hydraulic communication between the two units. The proponents of karst in the Rustler Formation at the WIPP site tend to mix data, to take data out of context, and to offer theory as fact. They do not analyze the data or synthesize it into a rigorous, mutually supporting framework. They assume that the existence of an anomaly rather than the specific characteristics of that anomaly proves the existence of intra-stratal karst in the Rustler Formation. In most cases, the interpretations of karst offered are non-unique interpretations of data for which more plausible interpretations exist.

More Details

Review of the independent risk assessment of the proposed Cabrillo liquified natural gas deepwater port project

Hightower, Marion M.; Gritzo, Louis A.; Luketa, Anay L.

In March 2005, the United States Coast Guard requested that Sandia National Laboratories provide a technical review and evaluation of the appropriateness and completeness of models, assumptions, analyses, and risk management options presented in the Cabrillo Port LNG Deepwater Port Independent Risk Assessment-Revision 1 (Cabrillo Port IRA). The goal of Sandia's technical evaluation of the Cabrillo Port IRA was to assist the Coast Guard in ensuring that the hazards to the public and property from a potential LNG spill during transfer, storage, and regasification operations were appropriately evaluated and estimated. Sandia was asked to review and evaluate the Cabrillo Port IRA results relative to the risk and safety analysis framework developed in the recent Sandia report, ''Guidance on Risk Analysis and Safety Implications of a Large Liquefied Natural Gas (LNG) Spill over Water''. That report provides a framework for assessing hazards and identifying approaches to minimize the consequences to people and property from an LNG spill over water. This report summarizes the results of the Sandia review of the Cabrillo Port IRA and supporting analyses. Based on our initial review, additional threat and hazard analyses, consequence modeling, and process safety considerations were suggested. The additional analyses recommended were conducted by the Cabrillo Port IRA authors in cooperation with Sandia and a technical review panel composed of representatives from the Coast Guard and the California State Lands Commission. The results from the additional analyses improved the understanding and confidence in the potential hazards and consequences to people and property from the proposed Cabrillo Port LNG Deepwater Port Project. The results of the Sandia review, the additional analyses and evaluations conducted, and the resolutions of suggested changes for inclusion in a final Cabrillo Port IRA are summarized in this report.

More Details

Constitutive models for rubber networks undergoing simultaneous crosslinking and scission

Budzien, Joanne L.; Lo, Chi S.; Curro, John G.; Thompson, Aidan P.; Grest, Gary S.

Constitutive models for chemically reacting networks are formulated based on a generalization of the independent network hypothesis. These models account for the coupling between chemical reaction and strain histories, and have been tested by comparison with microscopic molecular dynamics simulations. An essential feature of these models is the introduction of stress transfer functions that describe the interdependence between crosslinks formed and broken at various strains. Efforts are underway to implement these constitutive models into the finite element code Adagio. Preliminary results are shown that illustrate the effects of changing crosslinking and scission rates and history.

More Details

Developing a computationally efficient dynamic multilevel hybrid optimization scheme using multifidelity model interactions

Castro, Joseph P.; Gray, Genetha A.; Giunta, Anthony A.; Hough, Patricia D.

Many engineering application problems use optimization algorithms in conjunction with numerical simulators to search for solutions. The formulation of relevant objective functions and constraints dictate possible optimization algorithms. Often, a gradient based approach is not possible since objective functions and constraints can be nonlinear, nonconvex, non-differentiable, or even discontinuous and the simulations involved can be computationally expensive. Moreover, computational efficiency and accuracy are desirable and also influence the choice of solution method. With the advent and increasing availability of massively parallel computers, computational speed has increased tremendously. Unfortunately, the numerical and model complexities of many problems still demand significant computational resources. Moreover, in optimization, these expenses can be a limiting factor since obtaining solutions often requires the completion of numerous computationally intensive simulations. Therefore, we propose a multifidelity optimization algorithm (MFO) designed to improve the computational efficiency of an optimization method for a wide range of applications. In developing the MFO algorithm, we take advantage of the interactions between multi fidelity models to develop a dynamic and computational time saving optimization algorithm. First, a direct search method is applied to the high fidelity model over a reduced design space. In conjunction with this search, a specialized oracle is employed to map the design space of this high fidelity model to that of a computationally cheaper low fidelity model using space mapping techniques. Then, in the low fidelity space, an optimum is obtained using gradient or non-gradient based optimization, and it is mapped back to the high fidelity space. In this paper, we describe the theory and implementation details of our MFO algorithm. We also demonstrate our MFO method on some example problems and on two applications: earth penetrators and groundwater remediation.

More Details

Performance evaluation of ALCAN-AASF50-ferric coated activated alumina and granular ferric hydroxide (GFH) for arsenic removal in the presence of competitive ions in an active well :Kirtland field trial - initial studies

Krumhansl, James L.; Neidel, Linnah L.; Siegel, Malcolm D.

This report documents a field trial program carried out at Well No.15 located at Kirtland Air Force Base, Albuquerque, New Mexico, to evaluate the performance of two relatively new arsenic removal media, ALCAN-AASF50 (ferric coated activated alumina) and granular ferric hydroxide (US Filter-GFH). The field trial program showed that both media were able to remove arsenate and meet the new total arsenic maximum contaminant level (MCL) in drinking water of 10 {micro}g/L. The arsenate removal capacity was defined at a breakthrough effluent concentration of 5 {micro}g/L arsenic (50% of the arsenic MCL of 10 {micro}g/L). At an influent pH of 8.1 {+-} 0.4, the arsenate removal capacity of AASF50 was 33.5 mg As(V)/L of dry media (29.9 {micro}g As(V)/g of media on a dry basis). At an influent pH of 7.2 {+-} 0.3, the arsenate removal capacity of GFH was 155 mg As(V)/L of wet media (286 {micro}g As(V)/g of media on a dry basis). Silicate, fluoride, and bicarbonate ions are removed by ALCAN AASF50. Chloride, nitrate, and sulfate ions were not removed by AASF50. The GFH media also removed silicate and bicarbonate ions; however, it did not remove fluoride, chloride, nitrate, and sulfate ions. Differences in the media performance partly reflect the variations in the feed-water pH between the 2 tests. Both the exhausted AASF50 and GFH media passed the Toxicity Characteristic Leaching Procedure (TCLP) test with respect to arsenic and therefore could be disposed as nonhazardous waste.

More Details

Systematic evaluation of satellite remote sensing for identifying uranium mines and mills

Stork, Chris L.; Smartt, Heidi A.; Blair, Dianna S.; Smith, Jody L.

In this report, we systematically evaluate the ability of current-generation, satellite-based spectroscopic sensors to distinguish uranium mines and mills from other mineral mining and milling operations. We perform this systematic evaluation by (1) outlining the remote, spectroscopic signal generation process, (2) documenting the capabilities of current commercial satellite systems, (3) systematically comparing the uranium mining and milling process to other mineral mining and milling operations, and (4) identifying the most promising observables associated with uranium mining and milling that can be identified using satellite remote sensing. The Ranger uranium mine and mill in Australia serves as a case study where we apply and test the techniques developed in this systematic analysis. Based on literature research of mineral mining and milling practices, we develop a decision tree which utilizes the information contained in one or more observables to determine whether uranium is possibly being mined and/or milled at a given site. Promising observables associated with uranium mining and milling at the Ranger site included in the decision tree are uranium ore, sulfur, the uranium pregnant leach liquor, ammonia, and uranyl compounds and sulfate ion disposed of in the tailings pond. Based on the size, concentration, and spectral characteristics of these promising observables, we then determine whether these observables can be identified using current commercial satellite systems, namely Hyperion, ASTER, and Quickbird. We conclude that the only promising observables at Ranger that can be uniquely identified using a current commercial satellite system (notably Hyperion) are magnesium chlorite in the open pit mine and the sulfur stockpile. Based on the identified magnesium chlorite and sulfur observables, the decision tree narrows the possible mineral candidates at Ranger to uranium, copper, zinc, manganese, vanadium, the rare earths, and phosphorus, all of which are milled using sulfuric acid leaching.

More Details

Bent-waveguide modeling of large-mode-area, double-clad fibers for high-power lasers

Optics InfoBase Conference Papers

Ronald Hadley, G.; Farrow, Roger L.; Smith, A.V.

We have developed analytical and numerical models to address propagation of light through bent fiber amplifiers, including the mode distortion that results from fiber bending, and changes in beam profile resulting from self-focusing. © 2005 Optical Society of America.

More Details
Results 83201–83225 of 96,771
Results 83201–83225 of 96,771