Publications

Results 8226–8250 of 99,299

Search results

Jump to search filters

Design and testing of a free floating dual flap wave energy converter

Energy

Forbush, Dominic; Bacelli, Giorgio; Coe, Ryan G.

With a wide variety of wave energy device archetypes currently under consideration, it is a major challenge to ensure that research findings and methods are broadly applicable. In particular, the design and testing of wave energy control systems, a process which includes experimental design, empirical modeling, control design, and performance evaluation, is of interest. This goal motivated the redesign and testing of a floating dual flap wave energy converter. As summarized in this paper, the steps taken in the design, testing, and analysis of the device mirrored those previously demonstrated on a three-degree of freedom point absorber device. The method proposed does not require locking WEC degrees of freedom to develop an excitation model, and presents a more attainable system identification procedure for at-sea deployments. The results show that the methods employed work well for this dual flap device, lending additional support for the broad applicability of the design and testing methods applied here. The aim of this paper is to demonstrate that these models are particularly useful for deducing areas of device design or controller implementation that can be reasonably improved to increase device power capture.

More Details

Verification of diesel spray ignition phenomenon in dual-fuel diesel-piloted premixed natural gas engine

International Journal of Engine Research

Niki, Yoichi; Rajasegar, Rajavasanth; Li, Zheming; Musculus, Mark P.B.; Garcia Oliver, Jose M.; Takasaki, Koji

Dual-fuel (DF) engines, in which premixed natural gas and air in an open-type combustion chamber is ignited by diesel-fuel pilot sprays, have been more popular for marine use than pre-chamber spark ignition (PCSI) engines because of their superior durability. However, control of ignition and combustion in DF engines is more difficult than in PCSI engines. In this context, this study focuses on the ignition stability of n-heptane pilot-fuel jets injected into a compressed premixed charge of natural gas and air at low-load conditions. To aid understanding of the experimental data, chemical-kinetics simulations were carried out in a simplified engine-environment that provided insight into the chemical effects of methane (CH4) on pilot-fuel ignition. The simulations reveal that CH4 has an effect on both stages of n-heptane autoignition: the small, first-stage, cool-flame-type, low-temperature ignition (LTI) and the larger, second-stage, high-temperature ignition (HTI). As the ratio of pilot-fuel to CH4 entrained into the spray decreases, the initial oxidization of CH4 consumes the OH radicals produced by pilot-fuel decomposition during LTI, thereby inhibiting its progression to HTI. Using imaging diagnostics, the spatial and temporal progression of LTI and HTI in DF combustion are measured in a heavy-duty optical engine, and the imaging data are analyzed to understand the cause of severe fluctuations in ignition timing and combustion completeness at low-load conditions. Images of cool-flame and hydroxyl radical (OH*) chemiluminescence serve as indicators of LTI and HTI, respectively. The cycle-to-cycle and spatial variation in ignition extracted from the imaging data are used as key metrics of comparison. The imaging data indicate that the local concentration of the pilot-fuel and the richness of the surrounding natural-gas air mixture are important for LTI and HTI, but in different ways. In particular, higher injection pressures and shorter injection durations increase the mixing rate, leading to lower concentrations of pilot-fuel more quickly, which can inhibit HTI even as LTI remains relatively robust. Decreasing the injection pressure from 80 MPa to 40 MPa and increasing the injection duration from 500 µs to 760 µs maintained constant pilot-fuel mass, while promoting robust transition from LTI to HTI by effectively slowing the mixing rate. This allows enough residence time for the OH radicals, produced by the two-stage ignition chemistry of the pilot-fuel, to accelerate the transition from LTI to HTI before being consumed by CH4 oxidation. Thus from a practical perspective, for a premixed natural gas fuel–air equivalence-ratio, it is possible to improve the “stability” of the combustion process by solely manipulating the pilot-fuel injection parameters while maintaining constant mass of injected pilot-fuel. This allows for tailoring mixing trajectories to offset changes in fuel ignition chemistry, so as to promote a robust transition from LTI to HTI by changing the balance between the local concentration of the pilot-fuel and richness of the premixed natural gas and air. This could prove to be a valuable tool for combustion design to improve fuel efficiency or reduce noise or perhaps even reduce heat-transfer losses by locating early combustion away from in-cylinder walls.

More Details

Sensitivity of void mediated failure to geometric design features of porous metals

International Journal of Solids and Structures

Teichert, G.H.; Khalil, Mohammad; Alleman, Coleman; Garikipati, K.; Jones, Reese E.

Material produced by current metal additive manufacturing processes is susceptible to variable performance due to imprecise control of internal porosity, surface roughness, and conformity to designed geometry. Using a double U-notched specimen, we investigate the interplay of nominal geometry and porosity in determining ductile failure characteristics during monotonic tensile loading. We simulate the effects of distributed porosity on plasticity and damage using a statistical model based on populations of pores visible in computed tomography scans and additional sub-threshold voids required to match experimental observations of deformation and failure. We interpret the simulation results from a physical viewpoint and provide a statistical model of the probability of failure near stress concentrations. We provide guidance for designs where material defects could cause unexpected failures depending on the relative importance of these defects with respect to features of the nominal geometry.

More Details

Modeling rarefied gas chemistry with QuiPS, a novel quasi-particle method

Theoretical and Computational Fluid Dynamics

Poondla, Yasvanth; Goldstein, David; Varghese, Philip; Clarke, Peter; Moore, Christopher H.

The goal of this work is to build up the capability of quasi-particle simulation (QuiPS), a novel flow solver, such that it can adequately model the rarefied portion of an atmospheric reentry trajectory. Direct simulation Monte Carlo (DSMC) is the conventional solver for such conditions, but struggles to resolve transient flows, trace species, and high-level internal energy states due to stochastic noise. Quasi-particle simulation (QuiPS) is a novel Boltzmann solver that describes a system with a discretized, truncated velocity distribution function. The resulting fixed-velocity, variable weight quasi-particles enable smooth variation of macroscopic properties. The distribution function description enables the use of a variance-reduced collision model, greatly minimizing expense near equilibrium. This work presents the addition of a neutral air chemistry model to QuiPS and some demonstrative 0D simulations. The explicit representation of internal distributions in QuiPS reveals some of the flaws in existing physics models. Variance reduction, a key feature of QuiPS, can greatly reduce expense of multi-dimensional calculations, but is only cheaper when the gas composition is near chemical equilibrium.

More Details

Verification and Validation Activities for the Multi-Fidelity Toolkit

Lance, Blake; Krueger, Aaron M.; Freno, Brian A.; Wagnild, Ross M.

The Multi-Fidelity Toolkit (MFTK) is a simulation tool being developed at Sandia National Laboratories for aerodynamic predictions of compressible flows over a range of physics fidelities and computational speeds. These models include the Reynolds-Averaged-Navier-Stokes (RANS) equations, the Euler equations, and modified Newtonian aerodynamics (MNA) equations, and they can be invoked independently or coupled with hierarchical Kriging to interpolate between high-fidelity simulations using lower-fidelity data. However, as with any new simulation capability, verification and validation are necessary to gather credibility evidence. This work describes formal code- and solution-verification activities as well as model validation with uncertainty considerations. Code verification is performed on the MNA model by comparing with an analytical solution for flat-plate and inclined-plate geometries. Solution-verification activities include grid-refinement studies of HIFiRE-1 wind tunnel measurements, which are used for validation, for all model fidelities. A thorough treatment of the validation comparison with prediction error and validation uncertainty is also presented.

More Details
Results 8226–8250 of 99,299
Results 8226–8250 of 99,299