Publications

Results 7601–7625 of 99,299

Search results

Jump to search filters

Hydrogen Plus Other Alternative Fuels Risk Assessment Models (HyRAM+) Version 4.1 Technical Reference Manual

Ehrhart, Brian D.; Hecht, Ethan S.; Groth, Katrina M.; Reynolds, John T.; Blaylock, Myra L.; Carrier, Erin E.

The HyRAM+ software toolkit provides a basis for conducting quantitative risk assessment and consequence modeling for hydrogen, methane, and propane systems. HyRAM+ is designed to facilitate the use of state-of-the-art models to conduct robust, repeatable assessments of safety, hazards, and risk. HyRAM+ integrates deterministic and probabilistic models for quantifying accident scenarios, predicting physical effects, characterizing hazards (thermal effects from jet fires, overpressure effects from delayed ignition), and assessing impacts on people. HyRAM+ is developed at Sandia National Laboratories to support the development and revision of national and international codes and standards, and to provide developed models in a publicly-accessible toolkit usable by all stakeholders. This document provides a description of the methodology and models contained in HyRAM+ version 4.1. The two most significant changes for HyRAM+ version 4.1 from HyRAM+ version 4.0 are direct incorporation of unconfined overpressure into the QRA calculations and modification of the models for cryogenic liquid flow through an orifice. In QRA mode, the user no longer needs to input peak overpressure and impulse values that were calculated separately; rather, the unconfined overpressure is estimated for the given system inputs, leak size, and occupant location. The orifice flow model now solves for the maximum mass flux through the orifice at constant entropy while conserving energy, which does not require a direct speed of sound calculation. This does not affect the mass flow for all-gaseous releases; the method results in the same speed of sound for choked flow. However, this method does result in a higher (and more realistic) mass flow rate for a given leak size for liquid releases than was previously calculated.

More Details

Molecular Dynamics Simulation and Cryo-Electron Microscopy Investigation of AOT Surfactant Structure at the Hydrated Mica Surface

Minerals

Long, Daniel M.; Greathouse, Jeffery A.; Xu, Guangping; Jungjohann, Katherine L.

Structural properties of the anionic surfactant dioctyl sodium sulfosuccinate (AOT or Aerosol-OT) adsorbed on the mica surface were investigated by molecular dynamics simulation, including the effect of surface loading in the presence of monovalent and divalent cations. The simulations confirmed recent neutron reflectivity experiments that revealed the binding of anionic surfactant to the negatively charged surface via adsorbed cations. At low loading, cylindrical micelles formed on the surface, with sulfate head groups bound to the surface by water molecules or adsorbed cations. Cation bridging was observed in the presence of weakly hydrating monovalent cations, while sulfate groups interacted with strongly hydrating divalent cations through water bridges. The adsorbed micelle structure was confirmed experimentally with cryogenic electronic microscopy, which revealed micelles approximately 2 nm in diameter at the basal surface. At higher AOT loading, the simulations reveal adsorbed bilayers with similar surface binding mechanisms. Adsorbed micelles were slightly thicker (2.2–3.0 nm) than the corresponding bilayers (2.0–2.4 nm). Upon heating the low loading systems from 300 K to 350 K, the adsorbed micelles transformed to a more planar configuration resembling bilayers. The driving force for this transition is an increase in the number of sulfate head groups interacting directly with adsorbed cations.

More Details

An Accurate, Error-Tolerant, and Energy-Efficient Neural Network Inference Engine Based on SONOS Analog Memory

IEEE Transactions on Circuits and Systems I: Regular Papers

Xiao, Tianyao P.; Feinberg, Benjamin; Bennett, Christopher; Agrawal, Vineet; Saxena, Prashant; Prabhakar, Venkatraman; Ramkumar, Krishnaswamy; Medu, Harsha; Raghavan, Vijay; Chettuvetty, Ramesh; Agarwal, Sapan; Marinella, Matthew

We demonstrate SONOS (silicon-oxide-nitride-oxide-silicon) analog memory arrays that are optimized for neural network inference. The devices are fabricated in a 40nm process and operated in the subthreshold regime for in-memory matrix multiplication. Subthreshold operation enables low conductances to be implemented with low error, which matches the typical weight distribution of neural networks, which is heavily skewed toward near-zero values. This leads to high accuracy in the presence of programming errors and process variations. We simulate the end-To-end neural network inference accuracy, accounting for the measured programming error, read noise, and retention loss in a fabricated SONOS array. Evaluated on the ImageNet dataset using ResNet50, the accuracy using a SONOS system is within 2.16% of floating-point accuracy without any retraining. The unique error properties and high On/Off ratio of the SONOS device allow scaling to large arrays without bit slicing, and enable an inference architecture that achieves 20 TOPS/W on ResNet50, a > 10× gain in energy efficiency over state-of-The-Art digital and analog inference accelerators.

More Details

Self-Induced Curvature in an Internally Loaded Peridynamic Fiber

Silling, Stewart

A straight fiber with nonlocal forces that are independent of bond strain is considered. These internal loads can either stabilize or destabilize the straight configuration. Transverse waves with long wavelength have unstable dispersion properties for certain combinations of nonlocal kernels and internal loads. When these unstable waves occur, deformation of the straight fiber into a circular arc can lower its potential energy in equilibrium. The equilibrium value of the radius of curvature is computed explicitly.

More Details

Operability thresholds for thermally damaged EBW detonators

Combustion and Flame

Hobbs, Michael L.; Kaneshige, Michael; Coronel, Stephanie A.

Operability thresholds that differentiate between functional RP-87 exploding bridge wire (EBW) detonators and nonfunctional RP-87 EBW detonators (duds) were determined by measuring the time delay between initiation and early wall movement (function time). The detonators were inserted into an externally heated hollow cylinder of aluminum and fired with current flow from a charged capacitor using an exploding bridge wire (EBW initiated). Functioning detonators responded like unheated pristine detonators when the function time was 4 μs or less. The operability thresholds of the detonators were characterized with a simple decomposition cookoff model calibrated using a modified version of the Sandia Instrumented Thermal Ignition (SITI) experiment. These thresholds are based on the calculated state of the PETN when the detonators fire. The operability threshold is proportional to the positive temperature difference (ΔT) between the maximum temperature within the PETN and the onset of decomposition (∼406 K). The temperature difference alone was not sufficient to define the operability threshold. The operability threshold was also proportional to the time that the PETN had been at elevated temperatures. That is, failure was proportional to both temperature and reaction rate. The reacted gas fraction is used in the current work for the reaction correlation. Melting of PETN also had a significant effect on the operability threshold. Detonator failure occurred when the maximum temperature exceeded the nominal melting point of PETN (414 K) for 45±5 s or more.

More Details
Results 7601–7625 of 99,299
Results 7601–7625 of 99,299