The purpose of this work is to improve detection methods that can reliably identify special nuclear material (SNM). One method that can be used to identify special nuclear material is neutron multiplicity analysis. This method detects multiple time-correlated neutrons released from a fission event in the SNM. This work investigates the ability of the software code MCNP-PoliMi to simulate neutron multiplicity measurements from a highly moderated SNM source. A measurement of a 4.5-kg alpha-phase metal plutonium sphere surrounded by up to 6 inches of polyethylene shells has recently been performed by Sandia National Laboratories personnel at the Nevada Test Site. A post-processing code was developed to account for dead-time effects within the detector and to determine the neutron multiplicity distributions for various time intervals. With the distributions calculated, the Feynman-Y can be determined. The Feynman-Y is a metric that measures the level of correlation present in a sample. At this time MCNP-PoliMi is able predict the Feynman-Y within 10% of the measured value.
This presentation discusses the following topics: (1) Red Sky Background; (2) 3D Torus Interconnect Concepts; (3) Difficulties of Torus in IB; (4) New Routing Code for IB a 3D Torus; (5) Red Sky 3D Torus Implementation; and (6) Managing a Large IB Machine. Computing at Sandia: (1) Capability Computing - Designed for scaling of single large runs, Usually proprietary for maximum performance, and Red Storm is Sandia's current capability machine; (2) Capacity Computing - Computing for the masses, 100s of jobs and 100s of users, Extreme reliability required, Flexibility for changing workload, Thunderbird will be decommissioned this quarter, Red Sky is our future capacity computing platform, and Red Mesa machine for National Renewable Energy Lab. Red Sky main themes are: (1) Cheaper - 5X capacity of Tbird at 2/3 the cost, Substantially cheaper per flop than our last large capacity machine purchase; (2) Leaner - Lower operational costs, Three security environments via modular fabric, Expandable, upgradeable, extensible, and Designed for 6yr. life cycle; and (3) Greener - 15% less power-1/6th power per flop, 40% less water-5M gallons saved annually, 10X better cooling efficiency, and 4x denser footprint.
The readout of a solid state qubit often relies on single charge sensitive electrometry. However the combination of fast and accurate measurements is non trivial due to large RC time constants due to the electrometers resistance and shunt capacitance from wires between the cold stage and room temperature. Currently fast sensitive measurements are accomplished through rf reflectrometry. I will present an alternative single charge readout technique based on cryogenic CMOS circuits in hopes to improve speed, signal-to-noise, power consumption and simplicity in implementation. The readout circuit is based on a current comparator where changes in current from an electrometer will trigger a digital output. These circuits were fabricated using Sandia's 0.35 {micro}m CMOS foundry process. Initial measurements of comparators with an addition a current amplifier have displayed current sensitivities of < 1nA at 4.2K, switching speeds up to {approx}120ns, while consuming {approx}10 {micro}W. I will also discuss an investigation of noise characterization of our CMOS process in hopes to obtain a better understanding of the ultimate limit in signal to noise performance.
Constructing high-fidelity control pulses that are robust to control and system/environment fluctuations is a crucial objective for quantum information processing (QIP). We combine dynamical decoupling (DD) with optimal control (OC) to identify control pulses that achieve this objective numerically. Previous DD work has shown that general errors up to (but not including) third order can be removed from {pi}- and {pi}/2-pulses without concatenation. By systematically integrating DD and OC, we are able to increase pulse fidelity beyond this limit. Our hybrid method of quantum control incorporates a newly-developed algorithm for robust OC, providing a nested DD-OC approach to generate robust controls. Motivated by solid-state QIP, we also incorporate relevant experimental constraints into this DD-OC formalism. To demonstrate the advantage of our approach, the resulting quantum controls are compared to previous DD results in open and uncertain model systems.
Growth of high quality graphene films on SiC is regarded as one of the more viable pathways toward graphene-based electronics. Graphitic films form on SiC at elevated temperature because of preferential sublimation of Si. Little is known, however, about the atomistic processes of interrelated SiC decomposition and graphene growth. We have observed the formation of graphene on SiC by Si sublimation in an Ar atmosphere using low energy electron microscopy, scanning tunneling microcopy and atomic force microscopy. This work reveals that the growth mechanism depends strongly on the initial surface morphology, and that carbon diffusion governs the spatial relationship between SiC decomposition and graphene growth. Isolated bilayer SiC steps generate narrow ribbons of graphene, whereas triple bilayer steps allow large graphene sheets to grow by step flow. We demonstrate how graphene quality can be improved by controlling the initial surface morphology specifically by avoiding the instabilities inherent in diffusion-limited growth.