Publications

Results 73951–73975 of 99,299

Search results

Jump to search filters

Twin boundary structure in Bi2Te3 : experiment and theory

Medlin, Douglas L.

Establishing the atomic structure and composition of interfaces in thermoelectric materials is important to understanding how these defects mediate thermal and electronic transport. Here, we discuss our experimental observations and theoretical calculations of the Bi{sub 2}Te{sub 3} (0001) basal twin in nanocrystalline Bi{sub 2}Te{sub 3}. This interface is important both because it is common in tetradymite-structured thermoelectric compounds and because it serves as a useful model system for more complex interfaces. Macroscopically, the (0001) twin corresponds to a 180 rotation of the crystal about the [0001] axis, which reverses the stacking of the basal planes. The basal planes of Bi{sub 2}Te{sub 3} are arranged in 5-plane groupings of alternating Bi and Te layers. Microscopically, one envisions three possible interface terminations: at the Te layer in the middle of the 5-layer packet, at a Bi layer, or at the Te-double layer at the junction of the 5-layer packet. Using aberration-corrected HAADF-STEM imaging, we have established that the twin boundary terminates at the Te-double layer. This result is consistent with ab initio calculations, which predict that the lowest energy for the three candidate structures is for this termination.

More Details

Exploiting silicon chip technology for control of electrons on superfluid helium

Gurrieri, Thomas; Eng, Kevin E.; Hines, Kathleen J.

Electrons on the surface of superfluid helium have extremely high mobilities and long predicted spin coherence times, making them ideal mobile qubits. Previous work has shown that electrons localized in helium filled channels can be reliably transported between multiple underlying gates. Silicon chips have been designed, fabricated, and post processed by reactive ion etching to leverage the large scale integration capabilities of silicon technology. These chips, which serve as substrates for the electrons on helium research, utilize silicon CMOS for on-chip signal amplification and multiplexing and the uppermost metal layers for defining the helium channels and applying electrical potentials for moving the electrons. We will discuss experimental results for on-chip circuitry and clocked electron transport along etched channels.

More Details

Multiple junction cell characterization using the LBIC method : early results, issues, and pathways to improvement

Finn, Jason R.; Granata, Jennifer E.

A light beam induced current (LBIC) measurement is a non-destructive technique that produces a spatial graphical representation of current response in photovoltaic cells with respect to position when stimulated by a light beam. Generally, a laser beam is used for these measurements because the spot size can be made very small, on the order of microns, and very precise measurements can be made. Sandia National Laboratories Photovoltaic System Evaluation Laboratory (PSEL) uses its LBIC measurement technique to characterize single junction mono-crystalline and multi-crystalline solar cells ranging from miniature to conventional sizes. Sandia has modified the already valuable LBIC technique to enable multi-junction PV cells to be characterized.

More Details

Kinetic Monte Carlo simulation of the aging of nanoporous metals

Ong, Markus D.

Nanoporous metallic particles are of great interest for a range of applications including catalysis, gas storage, and electrical energy storage. In particular, recent work has shown that bulk powders of porous palladium can be synthesized in a scalable fashion. This material has pore sizes in the 2-5 nm range and has promise for use in hydrogen storage applications. However, because of the small pore size such materials are very susceptible to morphological evolution during aging, especially at elevated temperatures, leading to degradation of their storage properties. To better understand and predict the phenomena at work in nanoporous metal aging, we have developed a kinetic Monte Carlo (kMC) model for the simulation of atomic diffusion in a Pd lattice. The model is implemented in Sandia's parallelized kMC code SPPARKS. SPPARKS utilizes a spatial decomposition parallelization scheme, allowing large-scale simulations including millions of atoms. The diffusion model includes single-atom hops as well as Schwoebel barrier events that mimic concerted atom motions involving multiple lattice sites. Our simulations show that for statistically homogeneous nanoporous networks, coarsening at elevated temperature as measured by the surface area can be described by a scaling law that closely follows the L {approx} {sup 1/4} scaling predicted by continuum surface diffusion theory. This scaling holds despite the presence of surface faceting due to our simulations being run at temperatures below the roughening temperature of the material. Sensitivities of the rate of coarsening, the scaling exponent, and the amount of surface faceting to model parameters including temperature and event activation rates are explored. Because of the large spatial scales attainable in our computations, we are able to simulate nanoporous particle geometries similar to those synthesized in the laboratory, and compare directly to material aging experiments including porosimetry measurements and TEM images of particles.

More Details

Application of JMP and design of experiments to security system technology testing

Mitchiner, K.W.; Varoz, Carmella A.

JMP and design of experiments (DOE) have been successfully applied to security system technologies from sensors to communication and display systems. In all cases, the technologies have been complex enough to warrant the need for a statistical determination of significant factors and/or the generation of predictive models. For the sensors, it was the task of calibrating a fiber optic intrusion detection sensor (FOIDS) with 32 adjustable settings. In addition to the numerous settings, the FOIDS also had two software processors for detecting different types of alarms. The problem was made more complex when the different types of alarms occurred on the wrong processors, causing nuisance alarms. JMP's ability to optimize several predictive models simultaneously with JMP's Prediction Profiler flash files was an important factor in producing field solutions. For the Communications and Display testbed system, numerous hardware and software network components had been integrated to build a functional system. Although the components of the system had been tested individually, the system's performance could not be piecewise evaluated. Through the application of JMP's design of experiments and data mining capabilities, it was possible to test some of the factors affecting the system's performance and to differentiate between some of the software and hardware contributors. This paper will discuss design of experiments and the JMP tools applied to the solutions for both security systems.

More Details
Results 73951–73975 of 99,299
Results 73951–73975 of 99,299