Low Friction and Grain Boundary Sliding in Metals
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Sensors
Neutron double scatter imaging exploits the kinematics of neutron elastic scattering to enable emission imaging of neutron sources. Due to the relatively low coincidence detection efficiency of fast neutrons in organic scintillator arrays, imaging efficiency for double scatter cameras can also be low. One method to realize significant gains in neutron coincidence detection efficiency is to develop neutron double scatter detectors which employ monolithic blocks of organic scintillator, instrumented with photosensor arrays on multiple faces to enable 3D position and multi-interaction time pickoff. Silicon photomultipliers (SiPMs) have several advantageous characteristics for this approach, including high photon detection efficiency (PDE), good single photon time resolution (SPTR), high gain that translates to single photon counting capabilities, and ability to be tiled into large arrays with high packing fraction and photosensitive area fill factor. However, they also have a tradeoff in high uncorrelated and correlated noise rates (dark counts from thermionic emissions and optical photon crosstalk generated during avalanche) which may complicate event positioning algorithms. We have evaluated the noise characteristics and SPTR of Hamamatsu S13360-6075 SiPMs with low noise, fast electronic readout for integration into a monolithic neutron scatter camera prototype. The sensors and electronic readout were implemented in a small-scale prototype detector in order to estimate expected noise performance for a monolithic neutron scatter camera and perform proof-of-concept measurements for scintillation photon counting and three-dimensional event positioning.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users' Guide. The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce. This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users' Guide.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Propellants, Explosives, Pyrotechnics
Accelerated aging studies of β CL-20 thin films deposited on glass surfaces in different environments (N2, air, air/water) were conducted. Samples were analyzed with attenuated total reflectance infrared (ATR-IR) spectroscopy. Spectral features of molecular lattice inclusions in CL-20 films aged in an air/water environment were observed. The features occurred after β CL-20 polymorph transformation to α CL-20 and were accompanied by the appearance of lattice water peaks. To assist ATR-IR peak assignment, density functional theory studies were performed, and IR spectra of α CL-20 lattice inclusions of small molecules that were identified as degradation products of CL-20 were computed. Simulated spectra of NO2, HNCO, N2O, and CO2 incorporated into partially hydrated α CL-20 matched the experimental spectrum of β CL-20 thin films aged in air/water.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review A
Entangling gates in trapped-ion quantum computers are most often applied to stationary ions with initial motional distributions that are thermal and close to the ground state, while those demonstrations that involve transport generally use sympathetic cooling to reinitialize the motional state prior to applying a gate. Future systems with more ions, however, will face greater nonthermal excitation due to increased amounts of ion transport and exacerbated by longer operational times and variations over the trap array. In addition, pregate sympathetic cooling may be limited due to time costs and laser access constraints. In this paper, we analyze the impact of such coherent motional excitation on entangling-gate error by performing simulations of Mølmer-Sørenson (MS) gates on a pair of trapped-ion qubits with both thermal and coherent excitation present in a shared motional mode at the start of the gate. We quantify how a small amount of coherent displacement erodes gate performance in the presence of experimental noise, and we demonstrate that adjusting the relative phase between the initial coherent displacement and the displacement induced by the gate or using Walsh modulation can suppress this error. We then use experimental data from transported ions to analyze the impact of coherent displacement on MS-gate error under realistic conditions.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.