Insights into Hydrated Ion-Conducting Polymers from MD Simulations
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Advanced Optical Materials
Metal-organic frameworks (MOFs) have recently been shown to exhibit unique mechanisms of luminescence based on charge transfer between structural units in the framework. These MOFs have the potential to be structural tuned for targeted emission with little or no metal participation. A computationally led, material design and synthesis methodology is presented here that elucidates the mechanisms of light emission in interpenetrated structures comprised of metal centers (M = In, Ga, InGa, InEu) and BTB (1,3,5-Tris(4-carboxyphenyl)benzene) linkers, forming unique luminescent M-BTB MOF frameworks. Gas phase and periodic electronic structure calculations indicate that the intensity of the emission and the wavelength are overwhelmingly controlled by a combination of the number of interacting stacked linkers and their interatomic spacings, respectively. In the MOF, the ionic radii of the metal centers primarily control the expansion or shrinkage of the linker stacking distances. Experimentally, multiple M-BTB-based MOFs are synthesized and their photoluminescence was tested. Experiments validated the modeling by confirming that shifts in the crystal structure result in variations in light emission. Through this material design method, the mechanisms of tuning luminescence properties in interpenetrated M-BTB MOFs have been identified and applied to the design of MOFs with specific wavelength emission based on their structure.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Advances in Modeling Earth Systems
For decades, Arctic temperatures have increased twice as fast as average global temperatures. As a first step toward quantifying parametric uncertainty in Arctic climate, we performed a variance-based global sensitivity analysis (GSA) using a fully coupled, ultra-low resolution (ULR) configuration of version 1 of the U.S. Department of Energy's Energy Exascale Earth System Model (E3SMv1). Specifically, we quantified the sensitivity of six quantities of interests (QOIs), which characterize changes in Arctic climate over a 75 year period, to uncertainties in nine model parameters spanning the sea ice, atmosphere, and ocean components of E3SMv1. Sensitivity indices for each QOI were computed with a Gaussian process emulator using 139 random realizations of the random parameters and fixed preindustrial forcing. Uncertainties in the atmospheric parameters in the Cloud Layers Unified by Binormals (CLUBB) scheme were found to have the most impact on sea ice status and the larger Arctic climate. Our results demonstrate the importance of conducting sensitivity analyses with fully coupled climate models. The ULR configuration makes such studies computationally feasible today due to its low computational cost. When advances in computational power and modeling algorithms enable the tractable use of higher-resolution models, our results will provide a baseline that can quantify the impact of model resolution on the accuracy of sensitivity indices. Moreover, the confidence intervals provided by our study, which we used to quantify the impact of the number of model evaluations on the accuracy of sensitivity estimates, have the potential to inform the computational resources needed for future sensitivity studies.
Abstract not provided.
Abstract not provided.
IEEE Transactions on Human-Machine Systems
Role-based access control (RBAC) is adopted in the information and communication technology domain for authentication purposes. However, due to a very large number of entities within organizational access control (AC) systems, static RBAC management can be inefficient, costly, and can lead to cybersecurity threats. In this article, a novel hybrid RBAC model is proposed, based on the principles of offline deep reinforcement learning (RL) and Bayesian belief networks. The considered framework utilizes a fully offline RL agent, which models the behavioral history of users as a Bayesian belief-based trust indicator. Thus, the initial static RBAC policy is improved in a dynamic manner through off-policy learning while guaranteeing compliance of the internal users with the security rules of the system. By deploying our implementation within the smart grid domain and specifically within a Distributed Energy Resources (DER) ecosystem, we provide an end-To-end proof of concept of our model. Finally, detailed analysis and evaluation regarding the offline training phase of the RL agent are provided, while the online deployment of the hybrid RL-based RBAC model into the DER ecosystem highlights its key operation features and salient benefits over traditional RBAC models.
Abstract not provided.
Journal of the Electrochemical Society
The surfaces of most metals immersed in aqueous electrolytes have a several-nanometer-thick oxide/hydroxide surface layer. This gives rise to the existence of both metal∣oxide and oxide∣liquid electrotlyte interfaces, and makes it challenging to correlate atomic length-scale structures with electrochemical properties such the potential-of-zero-charge (PZC). The PZC has been shown to be correlated the onset potential for pitting corrosion. In this work, we conduct large-scale Density Functional Theory and ab initio molecular dynamics to calculate the PZC of a Al(111)∣γ-Al2O3(110)∣ water double-interface model within the context of aluminum corrosion. By partitioning the multiple interfaces involved into binary components with additive contributions to the overall work function and voltage, we predict the PZC to be −1.53 V vs SHE for this model. We also calculate the orbital energy levels of defects like oxygen vacancies in the oxide, which are critical parameters in theories associated with pitting corrosion. We predict that the Fermi level at the PZC lies above the impurity defect levels of the oxygen vacancies, which are therefore uncharged at the PZC. From the PZC estimate, we predict the voltage needed to create oxygen vacancies with net postive charges within a flatband approximation.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physics of Plasmas
An approach to numerically modeling relativistic magnetrons, in which the electrons are represented with a relativistic fluid, is described. A principal effect in the operation of a magnetron is space-charge-limited (SCL) emission of electrons from the cathode. We have developed an approximate SCL emission boundary condition for the fluid electron model. This boundary condition prescribes the flux of electrons as a function of the normal component of the electric field on the boundary. We show the results of a benchmarking activity that applies the fluid SCL boundary condition to the one-dimensional Child-Langmuir diode problem and a canonical two-dimensional diode problem. Simulation results for a two-dimensional A6 magnetron are then presented. Computed bunching of the electron cloud occurs and coincides with significant microwave power generation. Numerical convergence of the solution is considered. Sharp gradients in the solution quantities at the diocotron resonance, spanning an interval of three to four grid cells in the most well-resolved case, are present and likely affect convergence.