Moving target defenses (MTDs) are widely used as an active defense strategy for thwarting cyberattacks on cyber-physical systems by increasing diversity of software and network paths. Recently, machine Learning (ML) and deep Learning (DL) models have been demonstrated to defeat some of the cyber defenses by learning attack detection patterns and defense strategies. It raises concerns about the susceptibility of MTD to ML and DL methods. In this article, we analyze the effectiveness of ML and DL models when it comes to deciphering MTD methods and ultimately evade MTD-based protections in real-time systems. Specifically, we consider a MTD algorithm that periodically randomizes address assignments within the MIL-STD-1553 protocol - a military standard serial data bus. Two ML and DL-based tasks are performed on MIL-STD-1553 protocol to measure the effectiveness of the learning models in deciphering the MTD algorithm: 1) determining whether there is an address assignments change i.e., whether the given system employs a MTD protocol and if it does 2) predicting the future address assignments. The supervised learning models (random forest and k-nearest neighbors) effectively detected the address assignment changes and classified whether the given system is equipped with a specified MTD protocol. On the other hand, the unsupervised learning model (K-means) was significantly less effective. The DL model (long short-term memory) was able to predict the future addresses with varied effectiveness based on MTD algorithm's settings.
Full-field, multi-measurand diagnostics provide rich validation data necessary to improve the product life cycle time of nuclear safety components. Thermophosphor digital image correlation (TP+DIC) is a method of simultaneously measuring strain and temperature fields using patterned phosphor coatings deposited with aerosol deposition (AD). While TP+DIC produces a functional diagnostic, the coating’s reproducibility and the effect of the patterned features on the inferred temperature remains uncharacterized. This NSR&D project provided the opportunity to study two areas: 1) the tunability and repeatability of aerosol deposition and 2) the robustness of aerosol deposition phosphor on deforming substrates. The first area explores the process-property relationship of parameters elucidating the significance of each on the coating. The second area explores the relationship between the features’ characteristics (namely thickness) and the phosphor emission and inferred temperature. Together, the results will lead to the improved accuracy and functionality of TP+DIC for qualification testing of nuclear safety components.
Kaur Kohli, Ravleen; Davis, Ryan; Davies, James F.
Single particle levitation methods are a powerful subset of aerosol instrumentation that allow a wide range of particle properties and processes to be explored. One of the most common forms of single particle levitation uses electric fields and is generally referred to as an electrodynamic balance (EDB). There are many different kinds of EDB's that have been designed with different applications in mind, and a corresponding array of analytical tools have been developed to characterize particles held in these traps. In this tutorial, we review the design and development of the EDB and discuss a range of analytical methods, including electrostatic analysis, light scattering, spectroscopy, and imaging, that allow for measurements of hygroscopic growth, volatility, surface tension and viscosity, diffusion, and phase and morphology. We go on to review recent advanced analytical methods using mass spectrometry to probe particle composition. This review is intended to provide readers with the basic knowledge to set up an EDB platform, design measurement protocols based on the available analytical tools, and run experiments to probe the fundamental properties of aerosol particles relevant to their role in the atmosphere, impacts on clouds and climate, effects on air quality, role in health and disease, and applications in industrial processes.
The Daedalus ultrafast x-ray imager is the latest generation in Sandia’s hybrid CMOS detector family. With three frames along an identical line of sight, 1 ns minimum integration time, a higher full well than Icarus, and added features, Daedalus brings exciting new capabilities to diagnostic applications in inertial confinement fusion and high energy density science. In this work, we present measurements of time response, dynamic range, spatial uniformity, pixel cross-talk, and absolute x-ray sensitivity using pulsed optical and x-ray sources. We report a measured 1.5 Me− full well, pixel sensitivity at 9.58 × 10−7 V/e−, and an estimate of spatial uniformity at ∼5% across the sensor array.
We present methods to estimate parameters for models for the incidence angle modifier for simulating irradiance on a photovoltaic array. The incidence angle modifier quantifies the fraction of direct irradiance that is reflected away at the array’s face, as a function of the direct irradiance’s angle of incidence. Parameters can be estimated from data and the fitting method can be used to convert between models. We show that the model conversion procedure results in models that produce similar annual insolation on a fixed plane.
The research described here was performed as part of the DOE SciDAC project Coupling Approaches for Next Generation Architectures (CANGA). A framework was developed for the derivation of novel algorithms for the multirate time integration of two-component systems coupled across an interface between spatial domains. The multirate aspect means that different time steps are allowed by each component integrator. The framework provides a way to construct multirate integrators with desirable properties related to stability, accuracy and preservation of system invariants. This report describes the framework and summarizes the major results, examples and research products.
Here, a line list for the N second positive system, $B^3Π_g—C^3Π_u$, has been compiled using the PGOPHER spectral simulation software. The line list extends the number of vibrational states of the $B^3Π_g$ up to v=29 and a maximum rotational state of J=150 for simulation temperatures up to 7000 K. New electronic–vibrational transition moments were calculated using refined potential energy curves and a transition dipole moment with the DUO software. Comparisons to experimental data and the SPECAIR software have been used to validate the new line list. The results are available in ASCII ExoMol .state and .trans files and as a PGOPHER input file for use in spectral analysis.
The Clifford spectrum is a form of joint spectrum for noncommuting matrices. This theory has been applied in photonics, condensed matter and string theory. In applications, the Clifford spectrum can be efficiently approximated using numerical methods, but this only is possible in low dimensional example. In this paper we examine the higher-dimensional spheres that can arise from theoretical examples. We also describe a constructive method to generate five real symmetric almost commuting matrices that have a K-theoretical obstruction to being close to commuting matrices. For this, we look to matrix models of topological electric circuits.
Commercial generation of energy by nuclear power plants in the United States (U.S.) has produced thousands of metric tons of spent nuclear fuel (SNF), the disposal of which is the responsibility of the U.S. Department of Energy (DOE). Utilities typically utilize the practice of storing this SNF in dual-purpose canisters (DPCs). DPCs were designed, licensed, and loaded to meet Nuclear Regulatory Commission (NRC) requirements that preclude the possibility of a criticality event during SNF storage and transport, but were not designed or loaded to preclude the possibility of a criticality event during the regulated post-closure period following disposal, which could be up to 1,000,000 years (Price, 2019). There are several options being investigated that could facilitate the disposal of SNF stored in DPCs in a geologic repository (Hardin et al., 2015; SNL 2020b; SNL 2021b). These include: (1) repackage the SNF into canisters that are designed to prevent criticality during the regulated post-closure period following disposal, but with an increased disposal cost estimated at approximately $\$$20B in United States dollars (USD) (Freeze et al., 2019); (2) analysis of the probability and consequences of criticality from the direct disposal of DPCs during a 1,000,000-year post-closure period in several geologic disposal media (Price, 2019); and (3) filling the void space of a DPC with a material before its disposal that significantly limits the potential for criticality over the post-closure regulatory period. This report further investigates the third option, filling DPC already containing SNF with a material to limit the potential for criticality over the post-closure regulatory period.
Opacity-on-NIF has obtained opacity data under conditions similar to those achieved by the entirely different Opacity-on-Z platform. From low- and high-Z elements at different anchor points, rigorously compare the opacity data between the laboratories and to multiple opacity theory models. Compare and assess the data acquisition and processing methods for obtaining opacities and for measuring/inferring sample conditions. Explain, or develop hypotheses for, any discrepancies. Map progress to the National Opacity Strategy and define future directions.
We report a spontaneous and hierarchical self-assembly mechanism of carbon dots prepared from citric acid and urea into nanowire structures with large aspect ratios (>50). Scattering-type scanning near-field optical microscopy (s-SNOM) with broadly tunable mid-IR excitation was used to interrogate details of the self-assembly process by generating nanoscopic chemical maps of local wire morphology and composition. s-SNOM images capture the evolution of wire formation and the complex interplay between different chemical constituents directing assembly over the nano- to microscopic length scales. We propose that residual citrate promotes tautomerization of melamine surface functionalities to produce supramolecular shape synthons comprised of melamine-cyanurate adducts capable of forming long-range and highly directional hydrogen-bonding networks. This intrinsic, heterogeneity-driven self-assembly mechanism reflects synergistic combinations of high chemical specificity and long-range cooperativity that may be harnessed to reproducibly fabricate functional structures on arbitrary surfaces.
Nonlocal models allow for the description of phenomena which cannot be captured by classical partial differential equations. The availability of efficient solvers is one of the main concerns for the use of nonlocal models in real world engineering applications. Here, we present a domain decomposition solver that is inspired by substructuring methods for classical local equations. In numerical experiments involving finite element discretizations of scalar and vectorial nonlocal equations of integrable and fractional type, we observe improvements in solution time of up to 14.6x compared to commonly used solver strategies.
The basic building block of a distributed-memory cluster or supercomputer is a node. Each node includes a host, which is a processor (xPU) + memory hierarchy. The host can communicate with other hosts via its NIC (network interface controller). A network connects the nodes. The nodes may be arranged in some topology, which determines the network’s carrying capacity and cost.
The heat generated by high-level radioactive waste can pose numerical and physical challenges to subsurface flow and transport simulators if the liquid water content in a region near the waste package approaches residual saturation due to evaporation. Here, residual saturation is the fraction of the pore space occupied by liquid water when the hydraulic connectivity through a porous medium is lost, preventing the flow of liquid water. While conventional capillary pressure models represent residual saturation using asymptotically large values of capillary pressure, here, residual saturation is effectively modeled as a tortuosity effect alone. Treating the residual fluid as primarily dead-end pores and adsorbed films, relative permeability is independent of capillary pressure below residual saturation. To test this approach, PFLOTRAN is then used to simulate thermal-hydrological conditions resulting from direct disposal of a dual-purpose canister in unsaturated alluvium using both conventional asymptotic and revised, smooth models. Importantly, while the two models have comparable results over 100 000 years, the number of flow steps required is reduced by approximately 94%.
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the. U.S. Department of Energy’s National Nuclear Security Administration. The National Nuclear Security Administration’s Sandia Field Office administers the contract and oversees contractor operations at the Sandia National Laboratories Kaua'i Test Facility in Hawai'i. Activities at the site are conducted in support of U.S. Department of Energy weapons programs., and the site has operated as a rocket preparation launching and tracking facility since 1962. The U.S. Department of Energy and its management and operating contractor are committed to safeguarding the environment, assessing sustainability practices, and ensuring the validity and accuracy of the monitoring data presented in this annual site environmental report. This report summarizes the environmental protection, restoration, and monitoring programs in place at Sandia National Laboratories, Kaua'i Test Facility, during calendar year 2022. Environmental topics include cultural resource management, chemical management, air quality, meteorology, ecology, oil storage, site sustainability, terrestrial surveillance, waste management, water quality, wastewater discharge, and implementation of the National Environmental Policy Act. This report is prepared in accordance with and as required by DOE O 231.1B, Admin Change 1, Environment, Safety and Health Reporting and has been approved for public distribution.
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration. The National Nuclear Security Administration’s Sandia Field Office administers the contract and oversees contractor operations at Sandia National Laboratories, California. Activities at this multiprogram engineering and science laboratory support the nuclear weapons stockpile program, energy and environmental research, homeland security, micro- and nanotechnologies, and basic science and engineering research. The U.S. Department of Energy and its management and operating contractor are committed to safeguarding the environment, assessing sustainability practices, and ensuring the validity and accuracy of the monitoring data presented in this annual site environmental report. This report provides a summary of environmental monitoring information and compliance activities that occurred at Sandia National Laboratories, California during calendar year 2022 unless noted otherwise. General site and environmental program information is also included. This report was prepared in accordance with DOE O 231.1B, Environment, Safety and Health Reporting.
The assembly of ultra-complex structures from simple building units remains a long-term challenge in chemistry. Using small molecular building blocks (MBBs) in a mixed-ligand approach permitted the assembly of unprecedented metal-organic frameworks (MOFs), M-kum-MOF-1 (M = Y, Tb), exhibiting extra-large mesoporous cavities with small access windows. The ultra-complex cage of M-kum-MOF-1 consists of 240 vertices bridged by 432 edges, leading to a 194 faces-containing tile. This tile exhibits more faces than in any periodic structures (zeolites, MOFs, metal-organic polyhedra [MOPs], etc.) known to date. M-kum-MOF-1 not only possess zeolitic features (anionic framework), but they also contain an underlying wse zeolitic topology, which is observed for the first time.
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration. The National Nuclear Security Administration’s Sandia Field Office administers the contract and oversees contractor operations at Sandia National Laboratories, New Mexico. Activities at the site support research and development programs with a wide variety of national security missions, resulting in technologies for nonproliferation, homeland security, energy and infrastructure, and defense systems and assessments. The U.S. Department of Energy and its management and operating contractor are committed to safeguarding the environment, assessing sustainability practices, and ensuring the validity and accuracy of the monitoring data presented in this annual site environmental report. This report summarizes the environmental protection and monitoring programs in place at Sandia National Laboratories, New Mexico, during calendar year 2022. Environmental topics include cultural resource management, chemical management, air quality, ecology, environmental restoration, oil storage, site sustainability, terrestrial surveillance, waste management, water quality, and implementation of the National Environmental Policy Act. This report is prepared in accordance with and as required by DOE O 231.1B, Admin Change 1, Environment, Safety and Health Reporting, and has been approved for public distribution.
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the. U.S. Department of Energy’s National Nuclear Security Administration. The National Nuclear Security Administration’s Sandia Field Office administers the contract and oversees contractor operations at Sandia National Laboratories, Tonopah Test Range. Activities at the site are conducted in support of U.S. Department of Energy weapons programs and have operated at the site since 1957. The U.S. Department of Energy and its management and operating contractor are committed to safeguarding file environment, assessing sustainability practices, and ensuring the validity and accuracy of the monitoring data presented in this annual site environmental report. This report summarizes the environmental protection, restoration, and monitoring programs in place at Sandia National Laboratories, Tonopah Test Range during calendar year 2022. Environmental topics include cultural resource management, chemical management, air quality, ecology, environmental restoration, oil storage, site sustainability, terrestrial surveillance, waste management, water quality, wastewater discharge, and implementation of the National Environmental Policy Act. This report is prepared in accordance with and as required by DOE 0 231.IB, Admin Change 1, Environment, Safety and Health Reporting and has been approved for public distribution.