In developing secure applications and systems, the designers often must incorporate secure user identification in the design specification. In this paper, the authors study secure off line authenticated user identification schemes based on a biometric system that can measure a user`s biometric accurately (up to some Hamming distance). The schemes presented here enhance identification and authorization in secure applications by binding a biometric template with authorization information on a token such as a magnetic strip. Also developed here are schemes specifically designed to minimize the compromise of a user`s private biometrics data, encapsulated in the authorization information, without requiring secure hardware tokens. In this paper the authors furthermore study the feasibility of biometrics performing as an enabling technology for secure system and application design. The authors investigate a new technology which allows a user`s biometrics to facilitate cryptographic mechanisms.
This report summarizes work on the development of ultra-low power microwave CHFET integrated circuit development. Power consumption of microwave circuits has been reduced by factors of 50--1,000 over commercially available circuits. Positive threshold field effect transistors (nJFETs and PHEMTs) have been used to design and fabricate microwave circuits with power levels of 1 milliwatt or less. 0.7 {micro}m gate nJFETs are suitable for both digital CHFET integrated circuits as well as low power microwave circuits. Both hybrid amplifiers and MMICs were demonstrated at the 1 mW level at 2.4 GHz. Advanced devices were also developed and characterized for even lower power levels. Amplifiers with 0.3 {micro}m JFETs were simulated with 8--10 dB gain down to power levels of 250 microwatts ({mu}W). However 0.25 {micro}m PHEMTs proved superior to the JFETs with amplifier gain of 8 dB at 217 MHz and 50 {mu}W power levels but they are not integrable with the digital CHFET technology.
A compact, short pulse, repetitive accelerator has many useful military and commercial applications in biological counter proliferation, materials processing, radiography, and sterilization (medical instruments, waste, and food). The goal of this project was to develop and demonstrate a small, 700 kV accelerator, which can produce 7 kA particle beams with pulse lengths of 10--30 ns at rates up to 50 Hz. At reduced power levels, longer pulses or higher repetition rates (up to 10 kHz) could be achieved. Two switching technologies were tested: (1) spark gaps, which have been used to build low repetition rate accelerators for many years; and (2) high gain photoconductive semiconductor switches (PCSS), a new solid state switching technology. This plan was economical, because it used existing hardware for the accelerator, and the PCSS material and fabrication for one module was relatively inexpensive. It was research oriented, because it provided a test bed to examine the utility of other emerging switching technologies, such as magnetic switches. At full power, the accelerator will produce 700 kV and 7 kA with either the spark gap or PCSS pulser.
Sandia National Laboratories has a substantial effort in development of microelectromechanical system (MEMS) technologies. This miniaturization capability can lead to low-cost, small, high-performance systems-on-a-chip, and have many applications ranging from advanced military systems to large-volume commercial markets like automobiles, rf or land-based communications networks and equipment, or commercial electronics. One of the key challenges in realization of the microsystem is integration of several technologies including digital electronics; analog and rf electronics, optoelectronics, sensors and actuators, and advanced packaging technologies. In this work they describe efforts in integrating MEMS and optoelectronic or photonic functions and the fabrication constraints on both system components. the MEMS technology used in this work are silicon surface-machined systems fabricated using the SUMMiT (Sandia Ultraplanar Multilevel MEMS Technology) process developed at Sandia. This process includes chemical-mechanical polishing as an intermediate planarization step to allow the use of 4 or 5 levels of polysilicon.
An automated system for calibrating vacuum gauges over the pressure range of 10{sup {minus}6} to 0.1 Pa was designed and constructed at the National Institute of Standards and Technology (NIST) for the Department of Energy (DOE) Primary Standards Laboratory at Sandia National Laboratories (SNL). Calculable pressures are generated by passing a known flow of gas through an orifice of known conductance. The orifice conductance is derived from dimensional measurements and accurate flows are generated using metal capillary leaks. The expanded uncertainty (k = 2) in the generated pressure is estimated to be between 1% and 4% over the calibration range. The design, calibration results. and component uncertainties will be discussed.
Over the past several years, the US Nuclear Regulatory Commission (NRC) has sponsored the development of a new method for performing human reliability analyses (HRAs). A major impetus for the program was the recognized need for a method that would not only address errors of omission (EOOs), but also errors of commission (EOCs). Although several documents have been issued describing the basis and development of the new method referred to as ``A Technique for Human Event Analysis`` (ATHEANA), two documents were drafted to initially provide the necessary documentation for applying the method: the frame of reference (FOR) manual, which served as the technical basis document for the method and the implementation guideline (IG), which provided step by step guidance for applying the method. Upon the completion of the draft FOR manual and the draft IG in April 1997, along with several step-throughs of the process by the development team, the method was ready for a third-party test. The method was demonstrated at Seabrook Station in July 1997. The main goals of the demonstration were to (1) test the ATHENA process as described in the FOR manual and the IG, (2) test a training package developed for the method, (3) test the hypothesis that plant operators and trainers have significant insight into the EFCs that can make UAs more likely, and (4) identify ways to improve the method and its documentation. The results of the Seabrook demonstration are evaluated against the success criteria, and important findings and recommendations regarding ATHENA that were obtained from the demonstration are presented here.
Analysis of cost and performance of physical security systems can be a complex, multi-dimensional problem. There are a number of point tools that address various aspects of cost and performance analysis. Increased interest in cost tradeoffs of physical security alternatives has motivated development of an architecture called Cost and Performance Analysis (CPA), which takes a top-down approach to aligning cost and performance metrics. CPA incorporates results generated by existing physical security system performance analysis tools, and utilizes an existing cost analysis tool. The objective of this architecture is to offer comprehensive visualization of complex data to security analysts and decision-makers.
In most probabilistic risk assessments, there is a set of accident scenarios that involves the physical responses of a system to environmental challenges. Examples include the effects of earthquakes and fires on the operability of a nuclear reactor safety system, the effects of fires and impacts on the safety integrity of a nuclear weapon, and the effects of human intrusions on the transport of radionuclides from an underground waste facility. The physical responses of the system to these challenges can be quite complex, and their evaluation may require the use of detailed computer codes that are very time consuming to execute. Yet, to perform meaningful probabilistic analyses, it is necessary to evaluate the responses for a large number of variations in the input parameters that describe the initial state of the system, the environments to which it is exposed, and the effects of human interaction. Because the uncertainties of the system response may be very large, it may also be necessary to perform these evaluations for various values of modeling parameters that have high uncertainties, such as material stiffnesses, surface emissivities, and ground permeabilities. The authors have been exploring the use of artificial neural networks (ANNs) as a means for estimating the physical responses of complex systems to phenomenological events such as those cited above. These networks are designed as mathematical constructs with adjustable parameters that can be trained so that the results obtained from the networks will simulate the results obtained from the detailed computer codes. The intent is for the networks to provide an adequate simulation of the detailed codes over a significant range of variables while requiring only a small fraction of the computer processing time required by the detailed codes. This enables the authors to integrate the physical response analyses into the probabilistic models in order to estimate the probabilities of various responses.
GaN etching can be affected by a wide variety of parameters including plasma chemistry and plasma density. Chlorine-based plasmas have been the most widely used plasma chemistries to etch GaN due to the high volatility of the GaCl{sub 3} and NCl etch products. The source of Cl and the addition of secondary gases can dramatically influence the etch characteristics primarily due to their effect on the concentration of reactive Cl generated in the plasma. In addition, high-density plasma etch systems have yielded high quality etching of GaN due to plasma densities which are 2 to 4 orders of magnitude higher than reactive ion etch (RIE) plasma systems. The high plasma densities enhance the bond breaking efficiency of the GaN, the formation of volatile etch products, and the sputter desorption of the etch products from the surface. In this study, the authors report GaN etch results for a high-density inductively coupled plasma (ICP) as a function of BCl{sub 3}:Cl{sub 2} flow ratio, dc-bias, chamber-pressure, and ICP source power. GaN etch rates ranging from {approximately}100 {angstrom}/min to > 8,000 {angstrom}/min were obtained with smooth etch morphology and anisotropic profiles.
Enhanced tribological properties have been observed after treatment with pulsed high power ion beams, which results in rapid melting and resolidification of the surface. The authors have treated and tested 440C martensitic stainless steel (Fe-17 Cr-1 C). Ti and Al samples were sputter coated and ion beam treated to produce surface alloying. The samples were treated at the RHEPP-I facility at Sandia National Laboratories (0.5 MV, 0.5--1 {micro}s at sample location, <10 J/cm{sup 2}, 1--5 {micro}m ion range). They have observed a reduction in size of second phase particles and other microstructural changes in 440C steel. The hardness of treated 440C increases with ion beam fluence and a maximum hardness increase of a factor of 5 is obtained. Low wear rates are observed in wear tested of treated 440C steel. Surface alloyed Ti-Pt layers show improvements in hardness up to a factor of 3 over untreated Ti, and surface alloys of Al-Si result in a hardness increase of a factor of two over untreated Al. Both surface alloys show increased durability in wear testing. Rutherford Backscattering (RBS) measurements show overlayer mixing to the depth of the melted layer. X-ray Diffraction (XRD) and TEM confirm the existence of metastable states within the treated layer. Treated layer depths have been measured from 1--10 {micro}m.
The mission of the national laboratories has changed from weapon design and production to stockpile maintenance. Design engineers are becoming few in number and years worth of experience is about to be lost. What will happen when new weapons are designed or retrofits need to be made? Who will know the lessons learned in the past? What process will be followed? When and what software codes should be used? Intelligent design is the answer to the questions posed above for weapon design; for any design. An interactive design development environment will allow the designers of the future access to the knowledge of yesterday, today and tomorrow. Design guides, rules of thumb, lessons learned, production capabilities, production data, process flow, and analysis codes will be included in intelligent design. An intelligent design environment is being developed as a heuristic, knowledge based system and as a diagnostic design tool. The system provides the framework for incorporating rules of thumb from experienced design engineers, available manufacturing processes, including the newest ones, and manufacturing databases, with current data, to help reduce design margins. The system also has the capability to access analysis and legacy codes appropriately. A modular framework allows for various portions to be added or deleted based on the application. This paper presents the driving forces for developing an intelligent design environment and an overview of the system. This overview will include the system architecture and how it relates to the capture and utilization of design and manufacturing knowledge. The paper concludes with a discussion of realized and expected benefits.
The detection and refocus of moving targets in SAR imagery is of interest in a number of applications. In this paper the authors address the problem of refocusing a blurred signature that has by some means been identified as a moving target. They assume that the target vehicle velocity is constant, i.e., the motion is in a straight line with constant speed. The refocus is accomplished by application of a two-dimensional phase function to the phase history data obtained via Fourier transformation of an image chip that contains the blurred moving target data. By considering separately the phase effects of the range and cross-range components of the target velocity vector, they show how the appropriate phase correction term can be derived as a two-parameter function. They then show a procedure for estimating the two parameters, so that the blurred signature can be automatically refocused. The algorithm utilizes optimization of an image domain contrast metric. They present results of refocusing moving targets in real SAR imagery by this method.
Sandia National Laboratories has conducted research in chemical sensing and analysis of explosives for many years. Recently, that experience has been directed towards detecting mines and unexploded ordnance (UXO) by sensing the low-level explosive signatures associated with these objects. The authors focus has been on the classification of UXO in shallow water and anti-personnel/anti tank mines on land. The objective of this work is to develop a field portable chemical sensing system which can be used to examine mine-like objects (MLO) to determine whether there are explosive molecules associated with the MLO. Two sampling subsystems have been designed, one for water collection and one for soil/vapor sampling. The water sampler utilizes a flow-through chemical adsorbent canister to extract and concentrate the explosive molecules. Explosive molecules are thermally desorbed from the concentrator and trapped in a focusing stage for rapid desorption into an ion-mobility spectrometer (IMS). The authors describe a prototype system which consists of a sampler, concentrator-focuser, and detector. The soil sampler employs a light-weight probe for extracting and concentrating explosive vapor from the soil in the vicinity of an MLO. The chemical sensing system is capable of sub-part-per-billion detection of TNT and related explosive munition compounds. They present the results of field and laboratory tests on buried landmines which demonstrate their ability to detect the explosive signatures associated with these objects.
The disposition of the large backlog of plutonium residues at the Rocky Flats Environmental Technology Site (Rocky Flats) will require interim storage and subsequent shipment to a waste repository. Current plans call for disposal at the Waste Isolation Pilot Plant (WIPP) and the transportation to WIPP in the TRUPACT-II. The transportation phase will require the residues to be packaged in a container that is more robust than a standard 55 gallon waste drum. Rocky Flats has designed the Pipe Overpack Container to meet this need. The potential for damage to this container during onsite storage in unhardened structures for several hypothetical accident scenarios has been addressed using finite element calculations. This report will describe the initial conditions and assumptions for these analyses and the predicted response of the container.
This paper describes a novel digital signal processing algorithm for adaptively detecting and identifying signals buried in noise. The algorithm continually computes and updates the long-term statistics and spectral characteristics of the background noise. Using this noise model, a set of adaptive thresholds and matched digital filters are implemented to enhance and detect signals that are buried in the noise. The algorithm furthermore automatically suppresses coherent noise sources and adapts to time-varying signal conditions. Signal detection is performed in both the time-domain and the frequency-domain, thereby permitting the detection of both broad-band transients and narrow-band signals. The detection algorithm also provides for the computation of important signal features such as amplitude, timing, and phase information. Signal identification is achieved through a combination of frequency-domain template matching and spectral peak picking. The algorithm described herein is well suited for real-time implementation on digital signal processing hardware. This paper presents the theory of the adaptive algorithm, provides an algorithmic block diagram, and demonstrate its implementation and performance with real-world data. The computational efficiency of the algorithm is demonstrated through benchmarks on specific DSP hardware. The applications for this algorithm, which range from vibration analysis to real-time image processing, are also discussed.
It has been recognized that nondestructive inspection (NDI) techniques and instruments that have proven themselves in the laboratory do not always perform as well under field conditions. In this paper the authors explore combinations of formal laboratory and field experimentation to characterize NDI processes as they may be implemented in field conditions. They also discuss appropriate modeling for probability of detection (POD) curves as applied to data gathered under field conditions. A case is made for expanding the more traditional two-parameter models to models using either three or four parameters. They use NDI data gathered from various airframe inspection programs to illustrate the points.
Si{sup +} implant activation efficiencies above 90%, even at doses of 5 {times} 10{sup 15} cm{sup {minus}2}, have been achieved in GaN by RTP at 1,400--1,500 C for 10 secs. The annealing system utilizes with MoSi{sub 2} heating elements capable of operation up to 1,900 C, producing high heating and cooling rates (up to 100 C{center_dot}s{sup {minus}1}). Unencapsulated GaN show severe surface pitting at 1,300 C, and complete loss of the film by evaporation at 1,400 C. Dissociation of nitrogen from the surface is found to occur with an approximate activation energy of 3.8 eV for GaN (compared to 4.4 eV for AlN and 3.4 eV for InN). Encapsulation with either rf-magnetron reactively sputtered or MOMBE-grown AlN thin films provide protection against GaN surface degradation up to 1,400 C, where peak electron concentrations of {approximately} 5 {times} 10{sup 20} cm{sup {minus}3} can be achieved in Si-implanted GaN. SIMS profiling showed little measurable redistribution of Si, suggesting D{sub Si} {le} 10{sup {minus}13} cm{sup 2}{center_dot}s{sup {minus}1} at 1,400 C . The implant activation efficiency decreases at higher temperatures, which may result from Si{sub Ga} to Si{sub N} site switching and resultant self-compensation.
In this paper the authors give a construction of wavelets which are (a) semi-orthogonal with respect to an arbitrary elliptic bilinear form a({center_dot},{center_dot}) on the Sobolev space H{sub 0}{sup 1}((0, L)) and (b) continuous and piecewise linear on an arbitrary partition of [0, L]. They illustrate this construction using a model problem. They also construct alpha-orthogonal Battle-Lemarie type wavelets which fully diagonalize the Galerkin discretized matrix for the model problem with domain IR. Finally they describe a hybrid basis consisting of a combination of elements from the semi-orthogonal wavelet basis and the hierarchical Schauder basis. Numerical experiments indicate that this basis leads to robust scalable Galerkin discretizations of the model problem which remain well-conditioned independent of {epsilon}, L, and the refinement level K.
Investment casting is an important method for fabricating a variety of high quality components in mechanical systems. Cast components, unfortunately, have a large design and gate/runner build time associated with their fabrication. In addition, casting engineers often require many years of actual experience in order to consistently pour high quality castings. Since 1989, Sandia National Laboratories has been investigating casting technology and software that will reduce the time overhead involved in producing quality casts. Several companies in the casting industry have teamed up with Sandia to form the FASTCAST Consortium. One result of this research and the formation of the FASTCAST consortium is the creation of the WinMod software, an expert casting advisor that supports the decision making process of the casting engineer through visualization and advice to help eliminate possible casting defects.
The effect of temperature on the reversible and irreversible capacities of disordered carbons derived from polymethacryonitrile (PMAN) and divinylbenzene (DVB) copolymers was studied in 1 M LiPF{sub 6}/ethylene carbonate (EC)-dimethyl carbonate (DMC) (1:1 v/v) solution by galvanostatic cycling. The kinetics of passive film formation were examined by complex-impedance spectroscopy. Temperatures of 5, 21, and 35 C were used in the study.
Electrical characteristics of hybrid power sources consisting of Li-ion cells and double layer capacitors were studied at 25 C and {minus}20 C. The cells were initially evaluated for pulse performance and then measured in hybrid modes of operation. Cells manufactured by Panasonic delivered pulses up to 3A and cells from A and T delivered 4A at 25 C before cell capacity dropped. Measured cell resistances were 0.15 ohms and 0.12 ohms, respectively. These measurements were repeated at {minus}20 C. Direct coupling of the cells and capacitors (dumb hybrid) extended the pulse limits to 5.6A using the Panasonic cells and 9A for the A and T cells. Operation in a smart hybrid mode using uncoupled cell/capacitor discharge allowed full cell capacity usage at 25 C and showed a factor of 5 improvement in delivered capacity at {minus}20 C.
The power requirements for an inverter application were specified to be 500 V at 360 A, or 180 kW per each of six 1-s pulses delivered over a period of 10 minutes. Conventional high-power sources (e.g., flywheels) could not meet these requirements and the use of a thermal battery was considered. The final design involved four, 125-cell, 50-kW modules connected in series. A module using the LiSi/CoS{sub 2} couple and all-Li (LiCI-LiBr-LiF minimum-melting) electrolyte was successfully developed and tested. A power level of over 40 kW was delivered during a 0.5-s pulse. This translates into a specific power level of over 9 kW/kg or 19.2 kW/L delivered from a module. The module was still able to deliver over 30 kW during a 1-s pulse after 10 minutes.
The ignition processes that take place during activation of a 16 cell, center hole fired thermal battery were examined by monitoring the voltage of each cell during activation. The average rise time of each cell to a voltage of 1.125 V was determined for the LiSi/LiCl-LiBr-LiF/FeS{sub 2} electrochemical system. The effects of heat pellet composition, center hole diameter, and the load on the activation parameters were examined for three different igniters. A large variability in individual cell performance was evident along with cell reversal, depending on the location of the cell in the stack. It was not possible to draw detailed statistical information of the relative ignition sequence due to the intrinsic large scatter in the data.
This paper reviews issues related to the use of aeroelastic tailoring as a cost-effective, passive means to shape the power curve and reduce loads. Wind turbine blades bend and twist during operation, effectively altering the angle of attack, which in turn affects loads and energy production. There are blades now in use that have significant aeroelastic couplings, either on purpose or because of flexible and light-weight designs. Since aeroelastic effects are almost unavoidable in flexible blade designs, it may be desirable to tailor these effects to the authors advantage. Efforts have been directed at adding flexible devices to a blade, or blade tip, to passively regulate power (or speed) in high winds. It is also possible to build a small amount of desirable twisting into the load response of a blade with proper asymmetric fiber lay up in the blade skin. (Such coupling is akin to distributed {delta}{sub 3} without mechanical hinges.) The tailored twisting can create an aeroelastic effect that has payoff in either better power production or in vibration alleviation, or both. Several research efforts have addressed different parts of this issue. Research and development in the use of aeroelastic tailoring on helicopter rotors is reviewed. Potential energy gains as a function of twist coupling are reviewed. The effects of such coupling on rotor stability have been studied and are presented here. The ability to design in twist coupling with either stretching or bending loads is examined also.
This report describes the numerical procedure used to implement the Green`s function method for solving the Poisson equation in two-dimensional (r,z) cylindrical coordinates. The procedure can determine the solution to a problem with any or all of the applied voltage boundary conditions, dielectric media, floating (insulated) conducting media, dielectric surface charging, and volumetric space charge. The numerical solution is reasonably fast, and the dimension of the linear problem to be solved is that of the number of elements needed to represent the surfaces, not the whole computational volume. The method of solution is useful in the simulation of plasma particle motion in the vicinity of complex surface structures as found in microelectronics plasma processing applications. This report is a stand-alone supplement to the previous Sandia Technical Report SAND98-0537 presenting the two-dimensional Cartesian Poisson solver.
The need for a reliable, fast, wireless telemetry system in the drilling industry is great but the technical challenge to develop such a system is huge. A downhole wireless telemetry system based on Surface Area Modulation (SAM) has been developed which involves the introduction of an electrically insulated gap near the bottom of an otherwise conductive drillstring. The electrical resistance of this gap can be modulated to alter the electrical characteristics of a circuit involving a surface power supply, the sections of the drillstring above and below the gap, the earth, and a nearby return electrode. These changes alter the current in the circuit, which can be monitored at the surface with an ammeter. Downhole data are encoded and transmitted to the surface as a pattern of current oscillations. In a field test, the SAM system successfully transmitted downhole information from depths of 1,400 ft below the fluid level to the surface at a rate of 110 baud. Electrical insulation on the outside of the simulated drillstring was required to achieve this level of performance. Electrically insulated tubing improved the data transmission rate at a given depth by more than an order of magnitude, and increased the maximum depth from which successful data telemetry could be achieved by more than a factor of two.
This study examines ergonomic stressors associated with front-end process tool maintenance, relates them to decreased machine utilization, and proposes solution strategies to reduce their negative impact on productivity. Member company ergonomists observed technicians performing field maintenance tasks on seven different bottleneck tools and recorded ergonomic stressors using SEMaCheck, a graphics-based, integrated checklist developed by Sandia National Laboratories. The top ten stressors were prioritized according to a cost formula that accounted for difficulty, time, and potential errors. Estimates of additional time on a task caused by ergonomic stressors demonstrated that machine utilization could be increased from 6% to 25%. Optimal solution strategies were formulated based on redesign budget, stressor cost, and estimates of solution costs and benefits
The concept of ``progressive Lattice Sampling`` as a basis for generating successive finite element response surfaces that are increasingly effective in matching actual response functions is investigated here. The goal is optimal response surface generation, which achieves an adequate representation of system behavior over the relevant parameter space of a problem with a minimum of computational and user effort. Such is important in global optimization and in estimation of system probabilistic response, which are both made much more viable by replacing large complex computer models of system behavior by fast running accurate approximations. This paper outlines the methodology for Finite Element/Lattice Sampling (FE/LS) response surface generation and examines the effectiveness of progressively refined FE/LS response surfaces in decoupled Monte Carlo analysis of several model problems. The proposed method is in all cases more efficient (generally orders of magnitude more efficient) than direct Monte Carlo evaluation, with no appreciable loss of accuracy. Thus, when arriving at probabilities or distributions by Monte Carlo, it appears to be more efficient to expend computer model function evaluations on building a FE/LS response surface than to expend them in direct Monte Carlo sampling. Furthermore, the marginal efficiency of the FE/LS decoupled Monte Carlo approach increases as the size of the computer model increases, which is a very favorable property.
This report represents the completion of a three-year Laboratory-Directed Research and Development (LDRD) program to investigate sub-wavelength surface relief structures fabricated by direct-write e-beam technology as unique and very high-efficiency optical elements. A semiconductor layer with sub-wavelength sized etched openings or features can be considered as a layer with an effective index of refraction determined by the fraction of the surface filled with semiconductor relative to the fraction filled with air or other material. Such as a layer can be used to implement planar gradient-index lenses on a surface. Additionally, the nanometer-scale surface structures have diffractive properties that allow the direct manipulation of polarization and altering of the reflective properties of surfaces. With this technology a single direct-write mask and etch can be used to integrate a wide variety of optical functions into a device surface with high efficiencies; allowing for example, direct integration of polarizing optics into the surface with high efficiencies; allowing for example, direct integration of polarizing optics into the surfaces of devices, forming anti-reflection surfaces or fabricating high-efficiency, high-numerical aperture lenses, including integration inside vertical semiconductor laser cavities.
This report summarizes work on the development of high-speed vertical cavity surface emitting lasers (VCSELs) for multi-gigabit per second optical data communications applications (LDRD case number 3506.010). The program resulted in VCSELs that operate with an electrical bandwidth of 20 GHz along with a simultaneous conversion efficiency (DC to light) of about 20%. To achieve the large electrical bandwidth, conventional VCSELs were appropriately modified to reduce electrical parasitics and adapted for microwave probing for high-speed operation.
Micromachining technologies, or Micro-Electro-Mechanical Systems (MEMS), enable the develop of low-cost devices capable of sensing motion in a reliable and accurate manner. Sandia has developed a MEMS fabrication process for integrating both the micromechanical structures and microelectronics circuitry of surface micromachined sensors, such as silicon accelerometers, on the same chip. Integration of the micromechanical sensor elements with microelectronics provides substantial performance and reliability advantages for MEMS accelerometers. A design team at Sandia was assembled to develop a micromachined silicon accelerometer capable of surviving and measuring very high accelerations (up to 50,000 times the acceleration due to gravity). The Sandia integrated surface micromachining process was selected for fabrication of the sensor due to the extreme measurement sensitivity potential associated with integrated microelectronics. Very fine measurement sensitivity was required due to the very small accelerometer proof mass (< 200 {times} 10{sup {minus}9} gram) obtainable with this surface micromachining process. The small proof mass corresponded to small sensor deflections which required very sensitive electronics to enable accurate acceleration measurement over a range of 1,000 to 50,000 times the acceleration due to gravity. Several prototype sensors, based on a suspended plate mass configuration, were developed and the details of the design, modeling, fabrication and validation of the device will be presented in this paper. The device was analyzed using both conventional lumped parameter modeling techniques and finite element analysis tools. The device was tested and performed well over its design range (the device was tested over a range of a few thousand G to 46,000 G, where 1 G equals the acceleration due to gravity).
The intent and purpose of this work was to investigate and demonstrate cooperative behavior among a group of mobile robot machines. The specific goal of this work was to build a small swarm of identical machines and control them in such a way as to show a coordinated movement of the group in a flocking manner, similar to that observed in nature. Control of the swarm`s individual members and its overall configuration is available to the human user via a graphic man-machine interface running on a base station control computer. Any robot may be designated as the nominal leader through the interface tool, which then may be commanded to proceed to a particular geographic destination. The remainder of the flock follows the leader by maintaining their relative positions in formation, as specified by the human controller through the interface. The formation`s configuration can be altered manually through an interactive graphic-based tool. An alternative mode of control allows for teleoperation of one robot, with the flock following along as described above.
An autonomous mobile robotic capability is critical to developing remote work applications for hazardous environments. A few potential applications include humanitarian demining and ordnance neutralization, extraterrestrial science exploration, and hazardous waste cleanup. The ability of the remote platform to sense and maneuver within its environment is a basic technology requirement which is currently lacking. This enabling technology will open the door for force multiplication and cost effective solutions to remote operations. The ultimate goal of this work is to develop a mobile robotic platform that can identify and avoid local obstacles as it traverses from its current location to a specified destination. This goal directed autonomous navigation scheme uses the Global Positioning System (GPS) to identify the robot`s current coordinates in space and neural network processing of LADAR range images for local obstacle detection and avoidance. The initial year funding provided by this LDRD project has developed a small exterior mobile robotic development platform and a fieldable version of Sandia`s Scannerless Range Imager (SRI) system. The robotic testbed platform is based on the Surveillance And Reconnaissance ground Equipment (SARGE) robotic vehicle design recently developed for the US DoD. Contingent upon follow-on funding, future enhancements will develop neural network processing of the range map data to traverse unstructured exterior terrain while avoiding obstacles. The SRI will provide real-time range images to a neural network for autonomous guidance. Neural network processing of the range map data will allow real-time operation on a Pentium based embedded processor board.
The report is intended to address the need for data analysis in environmental sampling programs. Routine environmental sampling has been conducted at Sandia National Laboratories/New Mexico (SNL/NM) to ensure that site operations have not resulted in undue risk to the public and the environment. Over the years, large amounts of data have been accumulated. The richness of the data should be fully utilized to improve sampling design and prioritize sampling needs for a technically-sound, yet cost-effective sampling design. The report presents a methodology for analyzing environmental monitoring data and demonstrates the application by using SNL`s historical monitoring data. Recommendations for sampling design modification were derived based on the results of the analyses.
LUG and Sway brace ANalysis (LUGSAN) II is an analysis and database computer program that is designed to calculate store lug and sway brace loads for aircraft captive carriage. LUGSAN II combines the rigid body dynamics code, SWAY85, with a Macintosh Hypercard database to function both as an analysis and archival system. This report describes the LUGSAN II application program, which operates on the Macintosh System (Hypercard 2.2 or later) and includes function descriptions, layout examples, and sample sessions. Although this report is primarily a user`s manual, a brief overview of the LUGSAN II computer code is included with suggested resources for programmers.
Lost circulation, which is the loss of well drilling fluids to the formation while drilling, is a common problem encountered while drilling geothermal wells. The rapid detection of the loss of well drilling fluids is critical to the successful and cost-effective treatment of the wellbore to stop or minimize lost circulation. Sandia National Laboratories has developed an instrument to accurately measure the outflow rate of drilling fluids while drilling. This instrument, the Rolling Float Meter, has been under development at Sandia since 1991 and is now available for utilization by interested industry users. This report documents recent Rolling Float Meter design upgrades resulting from field testing and industry input, the effects of ongoing testing and evaluation both in the laboratory and in the field, and the final design package that is available to transfer this technology to industry users.
Two Monte Carlo programs, XITRAN and XMTRAN, were developed for calculating the emission of electrons from high-Z foils irradiated with x rays. XITRAN follows all individual elastic collisions of electrons with atoms, whereas XMTRAN uses the condensed-random-walk model. Both codes take into account photo-electrons, fluorescence radiation, and Auger electrons. Comparisons are made with an experiment by Dolan at Sandia Laboratories involving the backward and forward emission of electrons from a tantalum foil irradiated by 100-kV and 50-kV x-ray beams. There is good agreement between results from the XITRAN and XMTRAN codes. There emitted per incident x-ray photon, and in regard to the angular distribution of the emerging electrons. In regard to the electron energy spectra, there is fair agreement down to a spectral energy of 20 keV, whereas below 20 keV the calculated spectra lie considerably below the measurements.
This report is a user`s manual for GRAFLAB, which is a new database, analysis, and plotting package that has been written entirely in the MATLAB programming language. GRAFLAB is currently used for data reduction, analysis, and archival. GRAFLAB was written to replace GRAFAID, which is a FORTRAN database, analysis, and plotting package that runs on VAX/VMS.
In the present study we describe the development of an experimental fracture material property test method specific to dynamic fragmentation. Spherical test samples of the metals of interest are subjected to controlled impulsive stress loads by acceleration to high velocities with a light-gas launcher facility and subsequent normal impact on thin plates. Motion, deformation and fragmentation of the test samples are diagnosed with multiple flash radiography methods. The impact plate materials are selected to be transparent to the x-ray method so that only test metal material is imaged. Through a systematic series of such tests both strain-to-failure and fragmentation resistance properties are determined through this experimental method. Fragmentation property data for several steels, copper, aluminum, tantalum and titanium have been obtained to date. Aspects of the dynamic data have been analyzed with computational methods to achieve a better understanding of the processes leading to failure and fragmentation, and to test an existing computational fragmentation model.
Sandia has established a foundational technology in photonic integrated circuits (PICs) based on the (Al,Ga,In)As material system for optical communication, radar control and testing, and network switching applications at the important 1.3{mu}m/1.55{mu}m wavelengths. We investigated the optical, electrooptical, and microwave performance characteristics of the fundamental building-block PIC elements designed to be as simple and process-tolerant as possible, with particular emphasis placed on reducing optical insertion loss. Relatively conventional device array and circuit designs were built using these PIC elements: (1) to establish a baseline performance standard; (2) to assess the impact of epitaxial growth accuracy and uniformity, and of fabrication uniformity and yield; (3) to validate our theoretical and numerical models; and (4) to resolve the optical and microwave packaging issues associated with building fully packaged prototypes. Novel and more complex PIC designs and fabrication processes, viewed as higher payoff but higher risk, were explored in a parallel effort with the intention of meshing those advances into our baseline higher-yield capability as they mature. The application focus targeted the design and fabrication of packaged solitary modulators meeting the requirements of future wideband and high-speed analog and digital data links. Successfully prototyped devices are expected to feed into more complex PICs solving specific problems in high-performance communications, such as optical beamforming networks for phased array antennas.
The Waste Isolation Pilot Plant (WIPP) is being developed by the US Department of Energy for the geologic (deep underground) disposal of transuranic (TRU) waste. A Compliance Certification Application (CCA) of the WIPP (1) for such disposal was submitted to the US Environmental Protection Agency (EPA) in October, 1996, and is currently under review, with a decision anticipated in late 1997. An important component of the CCA is a performance assessment (PA) for the WIPP carried out by Sandia National Laboratories. The final outcome of the PA is a complementary cumulative distribution function (CCDF) for radionuclide releases from the WIPP to the accessible environment and an assessment of the confidence with which this CCDF can be estimated. This paper describes the computational process used to develop the CCDF. The results of uncertainty and sensitivity analysis are also presented.
The objective of the USNRC supported Lower Head Failure (LHF) Experiment Program at Sandia National Laboratories is to experimentally investigate and characterize the failure of the reactor pressure vessel (RPV) lower head due to the thermal and pressure loads of a severe accident. The experimental program is complemented by a modeling program focused on the development of a constitutive formulation for use in standard finite element structure mechanics codes. The problem is of importance because: lower head failure defines the initial conditions of all ex-vessel events; the inability of state-of-the-art models to simulate the result of the TMI-II accident (Stickler, et al. 1993); and TMI-II results suggest the possibility of in-vessel cooling, and creep deformation may be a precursor to water ingression leading to in-vessel cooling.
This paper presents an overview of several emerging nondestructive evaluation technologies that are being employed or considered for use to inspect commercial transport, commuter aircraft and military aircraft. An overview of the Federal Aviation Administration (FAA) Airworthiness Assurance NDI Validation Center (AANC) is described and how AANC teams with industry, universities, and other federal entities to assess these technologies.
Optimal response surface construction is being investigated as part of Sandia discretionary (LDRD) research into Analytic Nondeterministic Methods. The goal is to achieve an adequate representation of system behavior over the relevant parameter space of a problem with a minimum of computational and user effort. This is important in global optimization and in estimation of system probabilistic response, which are both made more viable by replacing large complex computer models with fast-running accurate and noiseless approximations. A Finite Element/Lattice Sampling (FE/LS) methodology for constructing progressively refined finite element response surfaces that reuse previous generations of samples is described here. Similar finite element implementations can be extended to N-dimensional problems and/or random fields and applied to other types of structured sampling paradigms, such as classical experimental design and Gauss, Lobatto, and Patterson sampling. Here the FE/LS model is applied in a ``decoupled`` Monte Carlo analysis of two sets of probability quantification test problems. The analytic test problems, spanning a large range of probabilities and very demanding failure region geometries, constitute a good testbed for comparing the performance of various nondeterministic analysis methods. In results here, FE/LS decoupled Monte Carlo analysis required orders of magnitude less computer time than direct Monte Carlo analysis, with no appreciable loss of accuracy. Thus, when arriving at probabilities or distributions by Monte Carlo, it appears to be more efficient to expend computer-model function evaluations on building a FE/LS response surface than to expend them in direct Monte Carlo sampling.
The single-event upset (SEU) responses of 16 Kbit to 1 Mbit SRAMs irradiated with low and high-energy heavy ions are reported. Standard low-energy heavy ion tests appear to be sufficiently conservative for technologies down to 0.5 {micro}m.
This paper presents preliminary analysis of a volcanic tuff repository containing a combination of low enrichment commercial spent nuclear fuels (SNF) and DOE-owned SNF packages. These SNFs were analyzed with respect to their criticality risks. Disposal of SNF packages containing significant fissile mass within a geologic repository must comply with current regulations relative to criticality safety during transportation and handling within operational facilities. However, once the repository is closed, the double contingency credits for criticality safety are subject to unremediable degradation, (e.g., water intrusion, continued presence of neutron absorbers in proximity to fissile material, and fissile material reconfiguration). The work presented in this paper focused on two attributes of criticality in a volcanic tuff repository for near-field and far-field scenarios: (1) scenario conditions necessary to have a criticality, and (2) consequences of a nuclear excursion that are components of risk. All criticality consequences are dependent upon eventual water intrusion into the repository and subsequent breach of the disposal package. Key criticality parameters necessary for a critical assembly are: (1) adequate thermal fissile mass, (2) adequate concentration of fissile material, (3) separation of neutron poison from fissile materials, and (4) sufficient neutron moderation (expressed in units of moderator to fissile atom ratios). Key results from this study indicated that the total energies released during a single excursion are minimal (comparable to those released in previous solution accidents), and the maximum frequency of occurrence is bounded by the saturation and temperature recycle times, thus resulting in small criticality risks.
This report represents the completion of a two years Laboratory Directed Research and Development (LDRD) program to investigate miniaturized systems for chemical detection and analysis. The future of advanced chemical detection and analysis is in miniature devices that are able to characterize increasingly complex samples, a laboratory on a chip. In this concept, chemical operations used to analyze complicated samples in a chemical laboratory sample handling, species separation, chemical derivitization and detection are incorporated into a miniature device. By using electrokinetic flow, this approach does not require pumps or valves, as fluids in microfabricated channels can be driven by externally applied voltages. This is ideal for sample handling in miniature devices. This project was to develop truly miniature on-chip optical systems based on Vertical Cavity Surface Emitting Lasers (VCSELs) and diffractive optics. These can be built into a complete system that also has on-chip electrokinetic fluid handling and chemical separation in a microfabricated column. The primary goal was the design and fabrication of an on-chip separation column with fluorescence sources and detectors that, using electrokinetic flow, can be used as the basis of an automated chemical analysis system. Secondary goals involved investigation of a dispersed fluorescence module that can be used to extend the versatility of the basic system and on chip, intracavity laser absorption as a high sensitivity detection technique.
Sandia National Laboratories is responsible for assuring that the US nuclear deterrent remains credible and that the one in a billion disaster of unintended nuclear detonation never occurs. Letting mistake-generated defects into the stockpile would undermine its mission. The current era of shrinking stockpiles is shrinking Sandia`s opportunities to discover and correct mistakes and fine tune processes over long production runs. In response, Sandia has chosen to develop and use a science-based, life cycle systems engineering practices that, in part, require understanding the design to manufacturing issues in enough detail to tune processes and eliminate mistakes before ever making a part. Defect prevention is a key area of concern that currently lacks sufficient theoretical understanding. This report is the result of a scoping study in the application of best-practice quality techniques that could address Sandia`s stockpile mission. The study provides detail on sources and control of mistakes, poka-yoke or mistake-proofing techniques, the Toyota Production system, and design theory in relation to manufacturing quality prediction. Scoping experiments are described and areas for future research are identified.
This report describes the numerical procedure used to implement the Green`s function method for solving the Poisson equation in two-dimensional Cartesian coordinates. The procedure can determine the solution to a problem with any or all of applied voltage boundary conditions, dielectric media, floating (insulated) conducting media, dielectric surface charging, periodic (reflective) boundary conditions, and volumetric space charge. The numerical solution is reasonably fast, and the dimension of the linear problem to be solved is that of the number of elements needed to represent the surfaces, not the whole computational volume. The method of solution is useful in the simulation of plasma particle motion in the vicinity of complex surface structures as found in microelectronics plasma processing applications. A FORTRAN implementation of this procedure is available from the author.
This paper presents a model for evaluating microcrack development and dilatant behavior of crystalline rocks. The model is developed within the concepts of continuum mechanics, with special emphasis on the development of internal boundaries in the continuum by utilizing fracture mechanics based cohesive zone models. The model is capable of describing the evolution from initial debonding through complete separation and subsequent void growth of an interface. An example problem of a rock salt specimen subjected to a high deviatoric load and low confinement is presented that predicts preferential opening of fractures oriented parallel with the maximum compressive stress axis.
Vapor phase transport in porous media is important in a number of environmental and industrial processes: soil moisture transport, vapor phase transport in the vadose zone, transport in the vicinity of buried nuclear waste, and industrial processes such as drying. The diffusion of water vapor in a packed bed containing residual liquid is examined experimentally. The objective is to quantify the effect of enhanced vapor diffusion resulting from evaporation/condensation in porous media subjected to a temperature gradient. Isothermal diffusion experiments in free-space were conducted to qualify the experimental apparatus and techniques. For these experiments measured diffusion coefficients are within 3.6% of those reported in the literature for the temperature range from 25 C to 40 C. Isothermal experiments in packed beds of glass beads were used to determine the tortuosity coefficient resulting in {tau} = 0.78 {+-} 0.028, which is also consistent with previously reported results. Nonisothermal experiments in packed beds in which condensation occurs were conducted to examine enhanced vapor diffusion. The interpretation of the results for these experiments is complicated by a gradual, but continuous, build-up of condensate in the packed beds during the course of the experiment. Results indicate diffusion coefficients which increase as a function of saturation resulting in enhancement of the vapor-phase transport by a factor of approximately four compared to a dry porous medium.
This project visualizes characterization data in a 3D setting, in real time. Real time in this sense means collecting the data and presenting it before it delays the user, and processing faster than the acquisition systems so no bottlenecks occur. The goals have been to build a volumetric viewer to display 3D data, demonstrate projecting other data, such as images, onto the 3D data, and display both the 3D and projected images as fast as the data became available. The authors have examined several ways to display 3D surface data. The most effective was generating polygonal surface meshes. They have created surface maps form a continuous stream of 3D range data, fused image data onto the geometry, and displayed the data with a standard 3D rendering package. In parallel with this, they have developed a method to project real-time images onto the surface created. A key component is mapping the data on the correct surfaces, which requires a-priori positional information along with accurate calibration of the camera and lens system.
SrBi{sub 2}Ta{sub 2}O{sub 9} (SBT) films have received considerable attention for use as non-volatile memory elements. The authors have developed a process to prepare SBT films with good ferroelectric properties at low temperatures. In this paper, they will present strategies used to optimize the properties of the films including film composition, the nature of the substrate (or bottom electrode) used, and the thermal processing cycle. Under appropriate conditions, {approximately} 1,700 {angstrom} films can be prepared which have a large switchable polarization (2P{sub r} > 10{micro}C/cm{sup 2}), and an operating voltage {le} 2.0 V.
This paper provides information on three (3) topics related to temperature measurements in an annealing procedure: (1) results of a series of experiments performed by CNIITMASH of the Russian consortium MOHT on their reactor pressure vessel (RPV) temperature measurement probe, (2) a discussion regarding uncertainties and errors in RPV temperature measurements, and (3) predictions from a thermal model of a spherical RPV temperature measurement probe. MOHT teamed with MPR Associates and was to perform the Annealing Demonstration Project (ADP) on behalf of the US Department of Energy, ESEERCo, EPRI, CRIEPI, Framatome, and Consumers Power Co. at the Midland plant. Experimental results show that the CNIITMASH probe errors are a maximum of about 27 C (49 F) during a 15 C/hr (27 F/hr) heat-up but only about 3 C (5.4 F) (0.6%) during the hold portion at 470 C (878 F). These errors are much smaller than those obtained from a similar series of experiments performed by Sandia National Laboratories (Sandia). The discussion about uncertainties and errors shows that results presented as a temperature difference provides a measure of the probe error. Qualitative agreement is shown between the model predictions, the experimental results of the CNIITMASH probe and the experimental results of a series of similar experiments performed by Sandia.
Swarms of mobile robots can be tasked with searching a geographic region for targets of interest, such as buried land mines. The authors assume that the individual robots are equipped with sensors tuned to the targets of interest, that these sensors have limited range, and that the robots can communicate with one another to enable cooperation. How can a swarm of cooperating sensate robots efficiently search a given geographic region for targets in the absence of a priori information about the target`s locations? Many of the obvious approaches are inefficient or lack robustness. One efficient approach is to have the robots traverse a space-filling curve. For many geographic search applications, this method is energy-frugal, highly robust, and provides guaranteed coverage in a finite time that decreases as the reciprocal of the number of robots sharing the search task. Furthermore, it minimizes the amount of robot-to-robot communication needed for the robots to organize their movements. This report presents some preliminary results from applying the Hilbert space-filling curve to geographic search by mobile robots.
Rapid Prototyping and Near Net Shape manufacturing technologies are the subject of considerable attention and development efforts. At Sandia National Laboratories, one such effort is LENS (Laser Engineered Net Shaping). The LENS process utilizes a stream of powder and a focused Nd YAG laser to build near net shape fully dense metal parts. In this process, a 3-D solid model is sliced, then an X-Y table is rastered under the beam to build each slice. The laser 1 powder head is incremented upward with each slice and the deposition process is controlled via shuttering of the laser. At present, this process is capable of producing fully dense metal parts of iron, nickel and titanium alloys including tool steels and aluminides. Tungsten components have also been produced. A unique aspect of this process is the ability to produce components wherein the composition varies at differing locations in the part. Such compositional variations may be accomplished in either a stepped or graded fashion. In this paper, the details of the process will be described. The deposition mechanism will be characterized and microstructures and their associated properties will be discussed. Examples of parts which have been produced will be shown and issues regarding dimensional control and surface finish will be addressed.
Of all the buried landmine identification technologies currently available, sensing the chemical signature from the explosive components found in landmines is the only technique that can classify non-explosive objects from the real threat. In the last two decades, advances in chemical detection methods has brought chemical sensing technology to the foreground as an emerging technological solution. In addition, advances have been made in the understanding of the fundamental transport processes that allow the chemical signature to migrate from the buried source to the ground surface. A systematic evaluation of the transport of the chemical signature from inside the mine into the soil environment, and through the soil to the ground surface is being explored to determine the constraints on the use of chemical sensing technology. This effort reports on the results of simulation modeling using a one-dimensional screening model to evaluate the impacts on the transport of the chemical signature by variation of some of the principal soil transport parameters.
This paper discusses rock mechanics testing of surrogate materials to provide failure criteria for compacted, degraded nuclear waste. This daunting proposition was approached by first assembling all known parameters such as the initial waste inventory and rock mechanics response of the underground setting after the waste is stored. Conservative assumptions allowing for extensive degradation processes helped quantify the lowest possible strength conditions of the future state of the waste. In the larger conceptual setting, computations involve degraded waste behavior in transient pressure gradients as gas exits the waste horizon into a wellbore. Therefore, a defensible evaluation of tensile strength is paramount for successful analyses and intentionally provided maximal failed volumes. The very conservative approach assumes rampant degradation to define waste surrogate composition. Specimens prepared from derivative degradation product were consolidated into simple geometries for rock mechanics testing. Tensile strength thus derived helped convince a skeptical peer review panel that drilling into the Waste Isolation Pilot Plant (WIPP) would not likely expel appreciable solids via the drill string.
The US Department of Energy`s (DOE) Mixed Waste Focus Area is developing a program to address and resolve issues associated with final waste form performance in treating and disposing of DOE`s mixed low-level waste (MLLW) inventory. A key issue for the program is identifying MLLW streams that may be problematic for disposal. Previous reports have quantified and qualified the capabilities of fifteen DOE sites for MLLW disposal and provided volume and radionuclide concentration estimates for treated MLLW based on the DOE inventory. Scoping-level analyses indicated that 101 waste streams identified in this report (approximately 6,250 m{sup 3} of the estimated total treated MLLW) had radionuclide concentrations that may make their disposal problematic. The radionuclide concentrations of these waste streams were compared with the waste acceptance criteria (WAC) for a DOE disposal facility at Hanford and for Envirocare`s commercial disposal facility for MLLW in Utah. Of the treated MLLW volume identified as potentially problematic, about 100 m{sup 3} exceeds the WAC for disposal at Hanford, and about 4,500 m{sup 3} exceeds the WAC for disposal at Envirocare. Approximately 7% of DOE`s total MLLW inventory has not been sufficiently characterized to identify a treatment process for the waste and was not included in the analysis. In addition, of the total treated MLLW volume, about 30% was associated with waste streams that did not have radionuclide concentration data and could not be included in the determination of potentially problematic waste streams.
The fate and transport of chemical signature molecules that emanate from buried landmines is strongly influenced by physical chemical properties and by environmental conditions of the specific chemical compounds. Published data have been evaluated as the input parameters that are used in the simulation of the fate and transport processes. A one-dimensional model developed for screening agricultural pesticides was modified and used to simulate the appearance of a surface flux above a buried landmine and estimate the subsurface total concentration. The physical chemical properties of TNT cause a majority of the mass released to the soil system to be bound to the solid phase soil particles. The majority of the transport occurs in the liquid phase with diffusion and evaporation driven advection of soil water as the primary mechanisms for the flux to the ground surface. The simulations provided herein should only be used for initial conceptual designs of chemical pre-concentration subsystems or complete detection systems. The physical processes modeled required necessary simplifying assumptions to allow for analytical solutions. Emerging numerical simulation tools will soon be available that should provide more realistic estimates that can be used to predict the success of landmine chemical detection surveys based on knowledge of the chemical and soil properties, and environmental conditions where the mines are buried. Additional measurements of the chemical properties in soils are also needed before a fully predictive approach can be confidently applied.
Under Sandia`s Laboratory Directed Research and Development (LDRD) program, novel acoustic wave-based sensors were explored for detecting gaseous chemical species in vehicle exhaust streams. The need exists for on-line, real-time monitors to continuously analyze the toxic exhaust gases -- nitrogen oxides (NOx), carbon monoxide (CO), and hydrocarbons (HC) -- for determining catalytic converter efficiency, documenting compliance to emission regulations, and optimizing engine performance through feedback control. In this project, the authors adapted existing acoustic wave chemical sensor technology to the high temperature environment and investigated new robust sensor materials for improving gas detection sensitivity and selectivity. This report describes one new sensor that has potential use as an exhaust stream residual hydrocarbon monitor. The sensor consists of a thickness shear mode (TSM) quartz resonator coated with a thin mesoporous silica layer ion-exchanged with palladium ions. When operated at temperatures above 300 C, the high surface area film catalyzes the combustion of the hydrocarbon vapors in the presence of oxygen. The sensor acts as a calorimeter as the exothermic reaction slightly increases the temperature, stressing the sensor surface, and producing a measurable deviation in the resonator frequency. Sensitivities as high as 0.44 (ppm-{Delta}f) and (ppm-gas) have been measured for propylene gas, with minimum detectable signals of < 50 ppm of propylene at 500 C.
This report covers the three phase effort to bring the SEA Corporation`s Powergrid{trademark} from the concept stage to pilot production. The three phases of this contract covered component development, prototype module development, and pilot line production. The Powergrid is a photovoltaic concentrator that generates direct current electricity directly from sunlight using a linear Fresnel lens. Analysis has shown that the Powergrid has the potential to be very low cost in volume production. Before the start of the project, only proof of concept demonstrations of the components had been completed. During the project, SEA Corporation developed a low cost extruded Fresnel lens, a low cost receiver assembly using one sun type cells, a low cost plastic module housing, a single axis tracking system and frame structure, and pilot production equipment and techniques. In addition, an 800 kW/yr pilot production rate was demonstrated and two 40 kW systems were manufactured and installed.
The US Department of Energy Office of Utility Technologies is planning a series of related projects that will seek to improve the integration of renewable energy generation with energy storage in modular systems. The Energy Storage Systems Program and the Photovoltaics Program at Sandia National Laboratories conducted meetings to solicit industry guidance and to create a set of recommendations for the proposed projects. Five possible projects were identified and a three pronged approach was recommended. The recommended approach includes preparing a storage technology handbook, analyzing data from currently fielded systems, and defining future user needs and application requirements.
This project was driven by the need to identify and provide unique, state-of-the-art solutions to the robotic path planning and precision motion execution problems that face automated processes such as welding and cutting using lasers. The initial LDRD proposal was for a full three years program with a schedule that would create a precision robotic platform capable of providing path planning and precision motion execution using sensor and graphical programming technologies as the first year milestone. Milestones for year two were centered in developing and deploying sensor technologies that support welding and cutting. And year three milestones included the integration of any developed sensors onto the robotic platform under software control to achieve autonomous control of laser welding and cutting processes. The work performed was directed at the goal of establishing a precision robotics platform with the capability to integrate graphical programming, CAD model based path planning, and motion execution under real-time sensor based control. This report covers the progress made toward that goal during the one year of funding.
Experimental cryogenic capabilities are essential for the study of ICF high-gain target and weapons effects issues involving dynamic materials response at low temperatures. This report describes progress during the period 2/97-11/97 on the FY97 LDRD project ``Cryogenic EOS Capabilities on Pulsed Radiation Sources (Z Pinch)``. The goal of this project is the development of a general purpose cryogenic target system for precision EOS and shock physics measurements at liquid helium temperatures on the Z accelerator Z-pinch pulsed radiation source. Activity during the FY97 LDRD phase of this project has focused on development of a conceptual design for the cryogenic target system based on consideration of physics, operational, and safety issues, design and fabrication of principal system components, construction and instrumentation of a cryogenic test facility for off-line thermal and optical testing at liquid helium temperatures, initial thermal testing of a cryogenic target assembly, and the design of a cryogenic system interface to the Z pulsed radiation source facility. The authors discuss these accomplishments as well as elements of the project that require further work.
Radiation response comparisons of lateral PNP bipolar technologies reveal that device hardening may be achieved by extending the emitter contact over the active base. The emitter-tied field plate suppresses recombination of carriers with interface traps.
To use the all-tetrahedral mesh generation existing today, the authors have explored the creation of a computationally efficient eight-node tetrahedral finite element (a four-node tetrahedral finite element enriched with four mid-face nodal points). The derivation of the element`s gradient operator, studies in obtaining a suitable mass lumping, and the element`s performance in applications are presented. In particular they examine the eight-node tetrahedral finite element`s behavior in longitudinal plane wave propagation, in transverse cylindrical wave propagation, and in simulating Taylor bar impacts. The element samples only constant strain states and, therefore, has 12 hour-glass modes. In this regard it bears similarities to the eight-node, mean-quadrature hexahedral finite element. Comparisons with the results obtained from the mean-quadrature eight-node hexahedral finite element and the four-node tetrahedral finite element are included. Given automatic all-tetrahedral meshing, the eight-node, constant-strain tetrahedral finite element is a suitable replacement for the eight-node hexahedral finite element in those cases where mesh generation requires an inordinate amount of user intervention and direction to obtain acceptable mesh properties.
Recently a large effort has been put into identifying solid acid materials, particularly sulfated zirconia and other sulfated metal oxides, that can be used to replace environmentally hazardous liquid acids in industrial processes. The authors are studying a group of mixed metal phosphates, some of which have also been sulfated, for their catalytic and morphological characteristics. Zirconium and titanium are the metals used in this study and the catalysts are synthesized from alkoxide starting materials with H{sub 3}PO{sub 4}, H{sub 2}O, and sometimes H{sub 2}SO{sub 4} as gelling agents. The measurement of acidity was achieved by using the isomerization of 2-methyl-2-pentene as a model reaction. The phosphate stabilized the mixed metal sulfates, preventing them from calcining to oxides boosting their initial catalytic activity. The addition of sulfate prevented the formation of the catalytically inactive mixed metal pyrophosphates when calcined at high temperatures (> 773 K).
The objective of this project is to develop the capability of symbolically generating an analytical model of a wind turbine for studies of control systems. This report focuses on a theoretical formulation of the symbolic equations of motion (EOMs) modeler for horizontal axis wind turbines. In addition to the power train dynamics, a generic 7-axis rotor assembly is used as the base model from which the EOMs of various turbine configurations can be derived. A systematic approach to generate the EOMs is presented using d`Alembert`s principle and Lagrangian dynamics. A Matlab M file was implemented to generate the EOMs of a two-bladed, free yaw wind turbine. The EOMs will be compared in the future to those of a similar wind turbine modeled with the YawDyn code for verification. This project was sponsored by Sandia National Laboratories as part of the Adaptive Structures and Control Task. This is the final report of Sandia Contract AS-0985.
Oxide trapped charge, field effects from emitter metallization, and high level injection phenomena moderate enhanced gain degradation of lateral pnp transistors at low dose rates. Hardness assurance tests at elevated irradiation temperatures require larger design margins for low power measurement biases.
This report provides a summary of the LDRD project titled: Electromagnetic impulse radar for the detection of underground structures. The project met all its milestones even with a tight two year schedule and total funding of $400 k. The goal of the LDRD was to develop and demonstrate a ground penetrating radar (GPR) that is based on high peak power, high repetition rate, and low center frequency impulses. The idea of this LDRD is that a high peak power, high average power radar based on the transmission of short impulses can be utilized effect can be utilized for ground penetrating radar. This direct time-domain system the authors are building seeks to increase penetration depth over conventional systems by using: (1) high peak power, high repetition rate operation that gives high average power, (2) low center frequencies that better penetrate the ground, and (3) short duration impulses that allow for the use of downward looking, low flying platforms that increase the power on target relative to a high flying platform. Specifically, chirped pulses that are a microsecond in duration require (because it is difficult to receive during transmit) platforms above 150 m (and typically 1 km) while this system, theoretically could be at 10 m above the ground. The power on target decays with distance squared so the ability to use low flying platforms is crucial to high penetration. Clutter is minimized by time gating the surface clutter return. Short impulses also allow gating (out) the coupling of the transmit and receive antennas.
The development of high current (I > 10 MA) drivers provides the authors with a new tool for the study of neutron-producing plasmas in the thermal regime. The imploded deuterium mass (or collisionality) increases as I{sup 2} and the ability of the driver to heat the plasma to relevant fusion temperatures improves as the power of the driver increases. Additionally, fast (<100 ns) implosions are more stable to the usual MHD instabilities that plagued the traditional slower implosions. The authors describe experiments in which deuterium gas puffs or CD{sub 2} fiber arrays were imploded in a fast z-pinch configuration on Sandia`s Saturn facility generating up to 3 {times} 10{sup 12} D-D neutrons. These experiments were designed to explore the physics of neutron-generating plasmas in a z-pinch geometry. Specifically, the authors intended to produce neutrons from a nearly thermal plasma where the electrons and ions have a nearly Maxwellian distribution. This is to be clearly differentiated from the more usual D-D beam-target neutrons generated in many dense plasma focus (DPF) devices.
Industrial ecology (IE) is an emerging scientific field that views industrial activities and the environment as an interactive whole. The IE approach simultaneously optimizes activities with respect to cost, performance, and environmental impact. Industrial Ecology provides a dynamic systems-based framework that enables management of human activity on a sustainable basis by: minimizing energy and materials usage; insuring acceptable quality of life for people; minimizing the ecological impact of human activity to levels that natural systems can sustain; and maintaining the economic viability of systems for industry, trade and commerce. Industrial ecology applies systems science to industrial systems, defining the system boundary to incorporate the natural world. Its overall goal is to optimize industrial activities within the constraints imposed by ecological viability, globally and locally. In this context, Industrial systems applies not just to private sector manufacturing and services but also to government operations, including provision of infrastructure. Sandia conducted its seventeenth Prosperity Game{trademark} on May 23--25, 1997, at the Hyatt Dulles Hotel in Herndon, Virginia. The primary sponsors of the event were Sandia National Laboratories and Los Alamos National Laboratory, who were interested in using the format of a Prosperity Game to address some of the issues surrounding Industrial Ecology. Honorary game sponsors were: The National Science Foundation; the Committee on Environmental Improvement, American Chemical Society; the Industrial and Engineering Chemistry Division, American Chemical Society; the US EPA--The Smart Growth Network, Office of Policy Development; and the US DOE-Center of Excellence for Sustainable Development.
This paper describes a method for transforming measured optical and infrared filter data for use with optical systems of arbitrary f-number and angle of incidence. Although it is generally desirable to have normal incidence at the filter (i.e., collimated light where an optical filter is used), other system design considerations may take precedence. In the case of a multispectral sensor under development at Sandia National Laboratories, system constraints require optical filter placement very near the focal plane. The light rays incident on the filters are therefore converging as determined by the system f-number while the chief ray of each ray bundle varies with focal plane position. To analyze the system`s spectral response at different points on the focal plane, a method was devised to transform the filter vendor`s measured data to account for the optical system design. The key to the transformation is the determination of weighting factors and shift factors for each angle of incidence making up a ray bundle. A computer worksheet was developed using a popular mathematical software package which performs this transformation for 75 key points on the focal plane.
This report documents a prototype tool developed to investigate the use of visualization and virtual reality technologies for improving software surety confidence. The tool is utilized within the execution phase of the software life cycle. It provides a capability to monitor an executing program against prespecified requirements constraints provided in a program written in the requirements specification language SAGE. The resulting Software Attribute Visual Analysis Tool (SAVAnT) also provides a technique to assess the completeness of a software specification.
The number of commercial airframes exceeding twenty years of service continues to grow. An unavoidable by-product of aircraft use is that crack and corrosion flaws develop throughout the aircraft`s skin and substructure elements. Economic barriers to the purchase of new aircraft have created an aging aircraft fleet and placed even greater demands on efficient and safe repair methods. Composite doublers, or repair patches, provide an innovative repair technique which can enhance the way aircraft are maintained. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is now possible to bond a single Boron-Epoxy composite doubler to the damaged structure. The composite doubler repair process produces both engineering and economic benefits. The FAA`s Airworthiness Assurance Center at Sandia National Labs completed a project to introduce composite doubler repair technology to the commercial aircraft industry. This paper focuses on a specialized structural test facility which was developed to evaluate the performance of composite doublers on actual aircraft structure. The facility can subject an aircraft fuselage section to a combined load environment of pressure (hoop stress) and axial, or longitudinal, stress. The tests simulate maximum cabin pressure loads and use a computerized feedback system to maintain the proper ratio between hoop and axial loads. Through the use of this full-scale test facility it was possible to: (1) assess general composite doubler response in representative flight load scenarios, and (2) verify the design and analysis approaches as applied to an L-1011 door corner repair.
Radiation-induced degradation of many types of bipolar transistors and circuits is more severe following low dose rate exposure than following high dose rate exposure. Since microelectronic devices in space are generally subjected to low dose rate irradiation, this complicates the hardness assurance testing of linear circuits and can lead to an overestimation of device lifetime in space. Previous work examining the physical mechanisms responsible for this dose rate effect has focused primarily on oxide trapped charge. Reduced net positive oxide trapped charge densities at high dose rates and zero bias have been attributed to space charge effects from slowly transporting holes trapped metastably at O vacancy complexes. Decreasing the dose rate or increasing the irradiation temperature leads to an increase in net positive oxide trapped charge near the Si-SiO{sub 2} interface by reducing these space charge effects. In this work, concentrations of hydrogen transport through two types of bipolar oxides are estimated from dopant passivation measurements in MOS capacitors. For unbiased irradiations, hydrogen passivation of substrate acceptors is greatly reduced at high dose rates compared to that at low dose rates or elevated temperatures. Consistent with other widely accepted models, it is argued that fewer interface traps are formed by high dose rate irradiation under zero bias, because fewer H{sup +} ions can drift to the Si-SiO{sub 2} interface and react with trap precursors. Similar to hole transport in these oxides, drift of the H{sup +} ions is inhibited at high dose rates by space charge accumulated in the oxide bulk.
In this work the basic Finite Element Tearing and Interconnecting (FETI) linear system solver and the PARPACK eigensolver are combined to compute the smallest modes of symmetric generalized eigenvalue problems that arise from structures modeled primarily by solid finite elements. Problems with over one million unknowns are solved. A comprehensive and relatively self-contained description of the FETI method is presented.
Results of two studies conducted as part of the Strategic Petroleum Reserve (SPR) Pipeline Corrosion Control Program are reported. These studies focused on evaluation of rotary-applied concrete materials for internal pipeline protection against the erosive and corrosive effects of flowing brine. The study also included evaluation of liners applied by hand on pipe pieces that cannot be lined by rotary methods. Such pipe pieces include tees, elbows and flanged pipe sections. Results are reported from a corrosion survey of 17 different liner formulations tested at the-Big-Rill SPR Site. Testing consisted of electrochemical corrosion rate measurements made on lined pipe sections exposed, in a test manifold, to flowing SPR generated fluids. Testing also involved cumulative immersion exposure where samples were exposed to static site-generated brine for increasing periods of time. Samples were returned to the laboratory for various diagnostic analyses. Results of this study showed that standard calcium silicate concrete (API RP10E) and a rotary calcium aluminate concrete formulation were excellent performers. Hand-lined pipe pieces did not provide as much corrosion protection. The focus of the second part of the study was on further evaluation of the calcium silicate, calcium aluminate and hand-applied liners in actual SPR equipment and service. It was a further objective to assess the practicality of electrochemical impedance spectroscopy (EIS) for field corrosion monitoring of concrete lined pipe compared to the more well-known linear polarization technique. This study showed that concrete linings reduced the corrosion rate for bare steel from 10 to 15 mils per year to 1 mil per year or less. Again, the hand-applied liners did not provide as much corrosion protection as the rotary-applied liners. The EIS technique was found to be robust for field corrosion measurements. Mechanistic and kinetic corrosion rate data were reliably obtained.
The conversion of small alkanes into alkenes represents an important chemical processing area; ethylene and propylene are the two most important organic chemicals manufactured in the U.S. These chemicals are currently manufactured by steam cracking of ethane and propane, an extremely energy intensive, nonselective process. The development of catalytic technologies (e.g., selective dehydrogenation) that can be used to produce ethylene and propylene from ethane and propane with greater selectivity and lower energy consumption than steam cracking will have a major impact on the chemical processing industry. This report details a study of two novel catalytic materials for the selective dehydrogenation of propane: Cr supported on hydrous titanium oxide ion-exchangers, and Pt nanoparticles encapsulated in silica and alumina aerogel and xerogel matrices.
The Analytical Chemistry Department uses a system of job cards to control and monitor the work through the organization. In the past, many different systems have been developed to allow each laboratory to monitor their individual work and report data. Unfortunately, these systems were separate and unique which caused difficulty in ascertaining any overall picture of the Department`s workload. To overcome these shortcomings, a new Job Card System was developed on Lotus Notes/Domino{trademark} for tracking the work through the laboratory. This application is groupware/database software and is located on the Sandia Intranet which allows users of any type of computer running a network browser to access the system. Security is provided through the use of logons and passwords for users who must add and/or modify information on the system. Customers may view the jobs in process by entering the system as an anonymous user. An overall view of the work in the department can be obtained by selecting from a variety of on screen reports. This enables the analysts, customers, customer contacts, and the Department Manager to quickly evaluate the work in process, the resources required, and the availability of equipment. On-line approval of the work and e-mail messaging of completed jobs has been provided to streamline the review and approval cycle. This paper provides a guide for the use of the Job Card System and information on maintenance of the system.
This report presents a nondestructive inspection assessment of eddy current and electrochemical analysis to separate inconel alloys from stainless steel alloys as well as an evaluation of cleaning techniques to remove a thermal oxide layer on aircraft exhaust components. The results of this assessment are presented in terms of how effective each technique classifies a known exhaust material. Results indicate that either inspection technique can separate inconel and stainless steel alloys. Based on the experiments conducted, the electrochemical spot test is the optimum for use by airframe and powerplant mechanics. A spot test procedure is proposed for incorporation into the Federal Aviation Administration Advisory Circular 65-9A Airframe & Powerplant Mechanic - General Handbook. 3 refs., 70 figs., 7 tabs.
An efficient method is presented for calculation of RMS von Mises stresses from stress component transfer functions and the Fourier representation of random input forces. An efficient implementation of the method calculates the RMS stresses directly from the linear stress and displacement modes. The key relation presented is one suggested in past literature, but does not appear to have been previously exploited in this manner.
This document is a reference guide for LHS, Sandia`s Latin Hypercube Sampling Software. This software has been developed to generate either Latin hypercube or random multivariate samples. The Latin hypercube technique employs a constrained sampling scheme, whereas random sampling corresponds to a simple Monte Carlo technique. The present program replaces the previous Latin hypercube sampling program developed at Sandia National Laboratories (SAND83-2365). This manual covers the theory behind stratified sampling as well as use of the LHS code both with the Windows graphical user interface and in the stand-alone mode.
Future generation automated human biometric identification and verification will require multiple features/sensors together with internal and external information sources to achieve high performance, accuracy, and reliability in uncontrolled environments. The primary objective of the proposed research is to develop a theoretical and practical basis for identifying and verifying people using standoff biometric features that can be obtained with minimal inconvenience during the verification process. The basic problem involves selecting sensors and discovering features that provide sufficient information to reliably verify a person`s identity under the uncertainties caused by measurement errors and tactics of uncooperative subjects. A system was developed for discovering hand, face, ear, and voice features and fusing them to verify the identity of people. The system obtains its robustness and reliability by fusing many coarse and easily measured features into a near minimal probability of error decision algorithm.
The goal of this research project was to create a passive and robust computer vision system for producing 3-D computer models of arbitrary scenes. Although the authors were unsuccessful in achieving the overall goal, several components of this research have shown significant potential. Of particular interest is the application of parametric eigenspace methods for planar pose measurement of partially occluded objects in gray-level images. The techniques presented provide a simple, accurate, and robust solution to the planar pose measurement problem. In addition, the representational efficiency of eigenspace methods used with gray-level features were successfully extended to binary features, which are less sensitive to illumination changes. The results of this research are presented in two papers that were written during the course of this project. The papers are included in sections 2 and 3. The first section of this report summarizes the 3-D modeling efforts.
Silicon wafers are coated with photoresist and exposed to ultraviolet (UV) light in a laboratory to simulate typical conditions expected in an actual semiconductor manufacturing process tool. Air is drawn through the exposure chamber and analyzed using chemical ionization mass spectrometry (CI/MS). Species that evaporate or outgas from the wafer are thus detected. The purpose of such analyses is to determine the potential of CI/MS as a real-time process monitoring tool. Results demonstrate that CI/MS can remotely detect the products evolved before, during, and after wafer UV exposure; and that the quantity and type of products vary with the photoresist coated on the wafer. Such monitoring could provide semiconductor manufacturers benefits in quality control and process analysis. Tool and photoresist manufacturers could also realize benefits from this measurement technique with respect to new tool, method, or photoresist development. The benefits realized can lead to improved device yields and reduced product and development costs.
In this introductory work, joint compliance is studied in both a numerical and experimental setting. A simple bolted interface is used as the test article and compliance is measured for the joint in both compression and in tension. This simple interface is shown to exhibit a strong non-linearity near the transition from compression to tension (or vice-versa). Modeling issues pertaining to numerically solving for the compliance are addressed. It is shown that the model predictions, in spite of convergence being very sensitive to numerical artifacts of the interface model, are in good agreement with experimentally measured strains and joint compliances. The joint behavior is a mechanical analogy to a diode, i.e., in compression, the joint is very stiff, acting almost as a rigid link, while in tension the joint is relatively soft, acting as a spring.
Recent advances in micro-science and technology, like Micro-Electro-Mechanical Systems (MEMS), have generated a group of unique liquid flow problems that involve characteristic length scales of a Micron. Also, in manufacturing processes such as coatings, current continuum models are unable to predict microscale physical phenomena that appear in these non-equilibrium systems. It is suspected that in these systems, molecular-level processes can control the interfacial energy and viscoelastic properties at the liquid/solid boundary. A massively parallel molecular dynamics (MD) code has been developed to better understand microscale transport mechanisms, fluid-structure interactions, and scale effects in micro-domains. Specifically, this MD code has been used to analyze liquid channel flow problems for a variety of channel widths, e.g. 0.005-0.05 microns. This report presents results from MD simulations of Poiseuille flow and Couette flow problems and addresses both scaling and modeling issues. For Poiseuille flow, the numerical predictions are compared with existing data to investigate the variation of the friction factor with channel width. For Couette flow, the numerical predictions are used to determine the degree of slip at the liquid/solid boundary. Finally, the results also indicate that shear direction with respect to the wall lattice orientation can be very important. Simulation results of microscale Couette flow and microscale Poiseuille flow for two different surface structures and two different shear directions will be presented.
Geotechnical structures such as underground bunkers, tunnels, and building foundations are subjected to stress fields produced by the gravity load on the structure and/or any overlying strata. These stress fields may be reproduced on a scaled model of the structure by proportionally increasing the gravity field through the use of a centrifuge. This technology can then be used to assess the vulnerability of various geotechnical structures to explosive loading. Applications of this technology include assessing the effectiveness of earth penetrating weapons, evaluating the vulnerability of various structures, counter-terrorism, and model validation. This document describes the development of expertise in scale model explosive testing on geotechnical structures using Sandia`s large scale centrifuge facility. This study focused on buried structures such as hardened storage bunkers or tunnels. Data from this study was used to evaluate the predictive capabilities of existing hydrocodes and structural dynamics codes developed at Sandia National Laboratories (such as Pronto/SPH, Pronto/CTH, and ALEGRA). 7 refs., 50 figs., 8 tabs.
A major advance contained in the new Fortran 90 language standard is the ability to define new data types and the operators associated with them. Writing computer code to implement computations with real and complex three-dimensional vectors and dyadics is greatly simplified if the equations can be implemented directly, without the need to code the vector arithmetic explicitly. The Fortran 90 module described here defines new data types for real and complex 3-dimensional vectors and dyadics, along with the common operations needed to work with these objects. Routines to allow convenient initialization and output of the new types are also included. In keeping with the philosophy of data abstraction, the details of the implementation of the data types are maintained private, and the functions and operators are made generic to simplify the combining of real, complex, single- and double-precision vectors and dyadics.
This report describes a Laboratory Directed Research and Development (LDRD) activity to develop a diagnostic technique for simultaneous temporal and spatial resolution of fluid flows. The goal is to obtain two orders of magnitude resolution in two spatial dimensions and time simultaneously. The approach used in this study is to scale up Particle Image Velocimetry (PIV) and Planar Laser Induced Fluorescence (PLIF) to acquire meter-size images at up to 200 frames/sec. Experiments were conducted in buoyant, fully turbulent, non-reacting and reacting plumes with a base diameter of one meter. The PIV results were successful in the ambient gas for all flows, and in the plume for non-reacting helium and reacting methane, but not reacting hydrogen. No PIV was obtained in the hot combustion product region as the seed particles chosen vaporized. Weak signals prevented PLIF in the helium. However, in reacting methane flows, PLIF images speculated to be from Poly-Aromatic-Hydrocarbons were obtained which mark the flame sheets. The results were unexpected and very insightful. A natural fluorescence from the seed particle vapor was also noted in the hydrogen tests.
A low-cost, thermally-activated, palladium-catalyzed metallization process was developed for rapid prototyping of polymeric electronic substrates and devices. The process was successfully applied in producing adhesiveless copper/polyimide laminates with high peel strengths and thick copper coating; copper/polyimide laminates are widely used in fabricating interconnects such as printed wiring boards (PWBs) and flexible circuits. Also successfully metallized using this low-cost metallization process were: (1) scaled-down models of radar-and-communication antenna and waveguide; (2) scaled-down model of pulsed-power-accelerator electrode; (3) three-dimensional micro-porous, open-cell vitreous carbon foams. Moreover, additive patterned metallization was successfully achieved by selectively printing or plotting the catalyst ink only on areas where metallization is desired, and by uniform thermal activation. Additive patterned metallization eliminates the time-consuming, costly and environmentally-unfriendly etching process that is routinely carried out in conventional subtractive patterned metallization. A metallization process via ultraviolet (UV) irradiation activation was also demonstrated. In this process palladium-catalyst solution is first uniformly coated onto the substrate. A masking pattern is used to cover the areas where metallization is not wanted. UV irradiation is applied uniformly to activate the palladium catalyst and to cure the polymer carrier in areas that are not covered by the mask. Metal is then deposited by electroless plating only or by a combination of electroless and electrolytic plating. This UV-activation technique is particularly useful in additive fine-line patterned metallization. Lastly, computer models for electrolytic and electroless plating processes were developed to provide guidance in plating-process design.
In the original report (Reference 1), to which this report is a supplement, the results of CONTAIN code calculations were presented for five thermal-hydraulic experiments performed in the NUPEC 1/4-scale model containment, including the International Standard Problem ISP-35. In the original report, calculated helium concentrations were presented per NUPEC`s specifications for ISP-35. In contrast, this supplemental report presents the helium concentrations on a conventional dry basis, which is physically consistent with the gas chromatography data. These conventionally defined dry helium concentrations are compared with the previously reported results and are found to exhibit trends that are more consistent with measured data. While agreement between the predicted results and data is substantially improved in general for the M-8-1 experiment using these helium concentrations as opposed to the ISP-35 specifications, general improvement in agreement is not observed in all cases.
The US Department of Energy (DOE) manages a multibillion dollar environmental management (EM) program. In June 1996, the Assistant Secretary of Energy for EM issued a memorandum with guidance and a vision for a ten year planning process for the EM Program. The purpose of this process, which became known as the Accelerated Cleanup: Focus on 2006, is to make step changes within the DOE complex regarding the approach for making meaningful environmental cleanup progress. To augment the process, Assistant Secretary requested the site contractors to engage in an effort to identify and evaluate integration alternatives for EM waste stream treatment, storage, and disposal (TSD) that would parallel the 2006 Plan. In October 1996, ten DOE contractor installations began the task of identifying alternative opportunities for low level radioactive waste (LLW). Cost effective, efficient solutions were necessary to meet all requirements associated with storing, characterizing, treating, packaging, transporting, and disposing of LLW while protecting the workers` health and safety, and minimizing impacts to the environment. To develop these solutions, a systems engineering approach was used to establish the baseline requirements, to develop alternatives, and to evaluate the alternatives. Key assumptions were that unique disposal capabilities exist within the DOE that must be maintained; private sector disposal capability for some LLW may not continue to exist into the foreseeable future; and decisions made by the LLW Team must be made on a system or complex wide basis to fully realize the potential cost and schedule benefits. This integration effort promoted more accurate waste volume estimates and forecasts; enhanced recognition of existing treatment, storage, and disposal capabilities and capacities; and improved identification of cost savings across the complex.
The Environmental Measurement-While-Drilling-Gamma Ray Spectrometer (EMWD-GRS) system represents an innovative blend of new and existing technology that provides real-time environmental and drill bit data during drilling operations. The EMWD-GRS technology was demonstrated at Savannah River Site (SRS) F-Area Retention Basin. The EMWD-GRS technology demonstration consisted of continuously monitoring for gamma-radiation-producing contamination while drilling two horizontal boreholes below the backfilled waste retention basin. These boreholes passed near previously sampled locations where concentrations of contaminant levels of cesium had been measured. Contaminant levels continuously recorded by the EMWD-GRS system during drilling were compared to contaminant levels previously determined through quantitative laboratory analysis of soil samples. The results show general agreement between the soil sampling and EMWD-GRS techniques for Cs-137. The EMWD-GRS system has been improved by the integration of an orientation sensor package for position sensing (PS) (EMWD-GRS/PS). This added feature gives the capability of calculating position, which is tied directly to EMWD-GRS sensor data obtained while drilling. The EMWD-GRS/PS system is described and the results of the field tests are presented.
Sandia National Laboratories is developing guidelines that outline the technical basis for relying on natural attenuation for the remediation of metals and radionuclide-contaminated soils and groundwaters at US Department of Energy (DOE) sites for those specific cases where natural processes are effective at ameliorating soil and groundwater toxicity. Remediation by monitored natural attenuation (MNA) requires a clear identification of the specific reaction(s) by which contaminant levels are made less available as well as considerable long-term monitoring. Central to MNA is the development of a conceptual model describing the biogeochemical behavior of contaminant(s) in the subsurface. The conceptual model will be used to make testable predictions of contaminant availability over time. In many cases, comparison between this prediction and field measurements will provide the test of whether MNA is to be implemented. As a result, development of the conceptual model should guide site characterization activities as well as long-term monitoring.
The unprecedented rate and scope of change in the commercial microelectronics industry presents a significant challenge to, and a significant opportunity for, achieving affordable superiority in defense electronics. A proactive approach to making the industry inherently more leveragable is discussed. Defense microelectronics is inexorably linked to the commercial semiconductor industry. This is obvious in the case of COTS (Commercial Off the Shelf parts) and MOTS (Modified--e.g., upscreened--Off the Shelf parts) as these parts are produced by the commercial industry. However, even captive defense integrated circuit lines building specialized parts are being forced by their dependence on a commercial-industry-driven supplier base to follow commercial product/process/design trends. The just released 1997 version of the Semiconductor Industry Association (SIA) National Technology Roadmap for Semiconductors (NTRS) describes the unprecedented changes occurring in the commercial industry. The industry is evolving from a more stable pre-1994 technology evolution to a discontinuous post-1997 technology evolution. The purpose of this paper is to discuss how these changes present both major challenges and major opportunities, for defense microelectronics, especially for applications involving long lifetimes, harsh environments and/or high consequences of failures.
This report documents a prototype tool developed to investigate the use of visualization and virtual reality technologies for improving software surety confidence. The tool is utilized within the execution phase of the software life cycle. It provides a capability to monitor an executing program against prespecified requirements constraints provided in a program written in the requirements specification language SAGE. The resulting Software Attribute Visual Analysis Tool (SAVAnT) also provides a technique to assess the completeness of a software specification. The prototype tool is described along with the requirements constraint language after a brief literature review is presented. Examples of how the tool can be used are also presented. In conclusion, the most significant advantage of this tool is to provide a first step in evaluating specification completeness, and to provide a more productive method for program comprehension and debugging. The expected payoff is increased software surety confidence, increased program comprehension, and reduced development and debugging time.
Twelve experiments were conducted to determine the effect of water filled targets on the penetration of tungsten long rods in terms of their residual mass and integrity. CTH hydrocode calculations were performed for each of the experiments to ensure that the erosion and breakup of the tungsten projectiles could be accurately reproduced. The CTH hydrocode predictions correlation well with the experimental results in most cases. Only 8% of the variance is unexplained. The slip interface between the rod and water was approximated in one of two ways: (1) using the CTH BLINT option in 2-D or (2) using a standard Eulerian mixed cells treatment. Results indicate that a 3-D BLINT algorithm is critical to predicting rod residual lengths. The authors were unable to reproduce rod fracture that occurred in every experiment where the water column exceeded 25 cm in length. The authors feel that this is due to a change in rod material properties during penetration, and continue to investigate the issue.