We report an experimental implementation for neutron transverse polarization analysis that is capable of detecting a small angular change (≪10-3 rad) in neutron spin orientation. This approach is demonstrated for monochromatic beams, and we show that it could be extended to polychromatic neutron beams. Our approach employs a 3He spin filter inside a solenoid with an analyzing direction perpendicular to the incident neutron polarization direction. The method was tested with polarized neutron beams and a spin rotator placed inside a μ-metal shield just upstream of the analyzer. No cryogenic superconducting shields or additional neutron spin manipulations are needed. With a counting detector, we experimentally show that the angular resolution δθ=1/(PnA√N) rad is only determined by the counting statistics for the total counts N and the product of the neutron polarization Pn and the analyzing power A. With a high-flux neutron beam, 10-6 rad angular sensitivity is feasible within a day. This simple, classical-quantum-limited transverse polarization analysis scheme may reduce the overall complexity of experimental implementation for applications requiring sensitive neutron polarimetry and improve the precision in fundamental science studies and polarized neutron imaging.
The trapped 171Yb+ ion is a promising candidate for portable atomic clock applications. However, with buffer-gas cooled ytterbium ions, the ions can be pumped into a low-lying 2F7 / 2 state or form YbH+ molecules. These dark states reduce the fluorescence signal from the ions and can degrade the clock stability. In this work, we study the dynamics of the populations of the 2F7 / 2 state and YbH+ molecules under different operating conditions of our 171 Yb+ ion system. Our study indicates that 2F7 / 2-state ions can form YbH+ molecules through interactions with hydrogen gas. As observed previously, dissociation of YbH+ is observed at wavelengths around 369 nm. We also demonstrate YbH+ dissociation using 405 nm light. Moreover, we show that the population in the dark states can be limited by using a single repump laser at 935 nm. Our study provides insights into the molecular formation in a trapped ion system.
We present experimental studies of atom-ion collisions using buffer-gas cooled, trapped ytterbium (Yb+) ions immersed in potassium (K) vapor. The range of the collisional temperature is on the order of several hundred kelvin (thermal regime). We have determined various collisional rate coefficients of the Yb+ ion per K-atom number density. We find the upper bounds of charge-exchange rate coefficients κce to be (12.7±1.6)×10-14cm3s-1 for K-Yb+171 and (5.3±0.7)×10-14cm3s-1 for K-Yb+172. For both isotopes, the spin-destruction rate coefficient κsd has an upper bound at (1.46±0.77)×10-9cm3s-1. The spin-exchange rate coefficient κse is measured to be (1.64±0.51)×10-9cm3s-1. The relatively low charge-exchange rate reported here demonstrates the advantage of using K atoms to sympathetically cool Yb+ ions and the relatively high spin-exchange rate may benefit research work in quantum metrology and quantum information processing on an atom-ion platform using K atoms and Yb+ ions.
We study the enhancement of cooperativity in the atom-light interface near a nanophotonic waveguide for application to quantum nondemolition (QND) measurement of atomic spins. Here the cooperativity per atom is determined by the ratio between the measurement strength and the decoherence rate. Counterintuitively, we find that by placing the atoms at an azimuthal position where the guided probe mode has the lowest intensity, we increase the cooperativity. This arises because the QND measurement strength depends on the interference between the probe and scattered light guided into an orthogonal polarization mode, while the decoherence rate depends on the local intensity of the probe. Thus, by proper choice of geometry, the ratio of good-to-bad scattering can be strongly enhanced for highly anisotropic modes. We apply this to study spin squeezing resulting from QND measurement of spin projection noise via the Faraday effect in two nanophotonic geometries, a cylindrical nanofiber and a square waveguide. We find that, with about 2500 atoms and using realistic experimental parameters, ∼6.3 and ∼13 dB of squeezing can be achieved on the nanofiber and square waveguide, respectively.
We describe a multichannel magnetoencephalography (MEG) system that uses optically pumped magnetometers (OPMs) to sense the magnetic fields of the human brain. The system consists of an array of 20 OPM channels conforming to the human subject's head, a person-sized magnetic shield containing the array and the human subject, a laser system to drive the OPM array, and various control and data acquisition systems. We conducted two MEG experiments: auditory evoked magnetic field and somatosensory evoked magnetic field, on three healthy male subjects, using both our OPM array and a 306-channel Elekta-Neuromag superconducting quantum interference device (SQUID) MEG system. The described OPM array measures the tangential components of the magnetic field as opposed to the radial component measured by most SQUID-based MEG systems. Herein, we compare the results of the OPM- and SQUID-based MEG systems on the auditory and somatosensory data recorded in the same individuals on both systems.
A nanoscale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon-atom interactions . A neutral - atom platform based on this microfabrication technology will be prealigned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano-waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.
We demonstrate matter-wave interference in a warm vapor of rubidium atoms. Established approaches to light-pulse atom interferometry rely on laser cooling to concentrate a large ensemble of atoms into a velocity class resonant with the atom optical light pulse. In our experiment, we show that clear interference signals may be obtained without laser cooling. This effect relies on the Doppler selectivity of the atom interferometer resonance. This interferometer may be configured to measure accelerations, and we demonstrate that multiple interferometers may be operated simultaneously by addressing multiple velocity classes.
We observe the nonlinearity of the Jaynes-Cummings (JC) ladder in the Autler-Townes spectroscopy of the hyperfine ground states for a Rydberg-dressed two-atom system. Here, the role of the two-level system in the JC model is played by the presence or absence of a collective Rydberg excitation, and the bosonic mode manifests as the number n of single-atom spin flips, symmetrically distributed between the atoms. We measure the normal-mode splitting and n nonlinearity as a function of detuning and Rabi frequency, thereby experimentally establishing the isomorphism with the JC model.
We have developed a four-channel optically pumped atomic magnetometer for magnetoencephalography (MEG) that incorporates a passive diffractive optical element (DOE). The DOE allows us to achieve a long, 18-mm gradiometer baseline in a compact footprint on the head. Using gradiometry, the sensitivities of the channels are < 5 fT/Hz1/2, and the 3-dB bandwidths are approximately 90 Hz, which are both sufficient to perform MEG. Additionally, the channels are highly uniform, which offers the possibility of employing standard MEG post-processing techniques. This module will serve as a building block of an array for magnetic source localization.