Publications

Results 201–209 of 209

Search results

Jump to search filters

Analytic models of high-temperature hohlraums

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics

Stygar, William A.; Olson, Richard E.; Spielman, Rick B.; Leeper, Ramon J.

A time dependent model for the unified set of high-temperature-hohlraum was presented. The model lead to the definition of laser-conversion-efficiency in terms of the net source power for a laser-driven hohlraum. The capsule coupling efficiency of the baseline National Facility hohlraum was found to be 15-23 % higher than predicted by the analytic expressions. © 2001 by the Infectious Diseases Society of America.

More Details

MHD Modeling of Conductors at Ultra-High Current Density

IEEE Transactions in Plasma Science

Rosenthal, Stephen E.; Desjarlais, Michael P.; Spielman, Rick B.; Stygar, William A.; Asay, James R.

In conjunction with ongoing high-current experiments on Sandia National Laboratories' Z accelerator, the authors have revisited a problem first described in detail by Heinz Knoepfel. Unlike the 1-Tesla MITLs of pulsed power accelerators used to produce intense particle beams, Z's disc transmission line (downstream of the current addition) is in a 100--1,200 Tesla regime, so its conductors cannot be modeled simply as static infinite conductivity boundaries. Using the MHD code MACH2 they have been investigating the conductor hydrodynamics, characterizing the joule heating, magnetic field diffusion, and material deformation, pressure, and velocity over a range of current densities, current rise-times, and conductor materials. Three purposes of this work are (1) to quantify power flow losses owing to ultra-high magnetic fields, (2) to model the response of VISAR diagnostic samples in various configurations on Z, and (3) to incorporate the most appropriate equation of state and conductivity models into the MHD computations. Certain features are strongly dependent on the details of the conductivity model.

More Details

Insentropic compression of solid using pulsed magnetic loading

Review of Scientific Instruments (American Physical Society)

Hall, Clint A.; Asay, James R.; Stygar, William A.; Spielman, Rick B.; Rosenthal, Stephen E.; Knudson, Marcus D.

Shock loading techniques are often used to determine material response along a specific pressure loading curve referred to as the Hugoniot. However, many technological and scientific applications require accurate determination of dynamic material response that is off-Hugoniot, covering large regions of the equation-of-state surface. Unloading measurements from the shocked state provide off-Hugoniot information, but experimental techniques for measuring compressive off-Hugoniot response have been limited. A new pulsed magnetic loading technique is presented which provides previously unavailable information on isentropic loading of materials to pressures of several hundred kbar. This smoothly increasing pressure loading provides a good approximation to the high-pressure material isentrope centered at ambient conditions. The approach uses high current densities to create ramped magnetic loading to a few hundred kbar over time intervals of 100--200 ns. The method has successfully determined the isentropic mechanical response of copper to about 200 kbar and has been used to evaluate the kinetics of the alpha-epsilon phase transition occurring in iron at 130 kbar. With refinements in progress, the method shows promise for performing isentropic compression experiments to multi-Mbar pressures.

More Details

Spectral Resolution for Five-Element, Filtered, X-Ray Detector (XRD) Arrays Using the Methods of Backus and Gilbert

Review of Scientific Instruments

Fehl, David L.; Chandler, Gordon A.; Stygar, William A.

The generalized method of Backus and Gilbert (BG) is described and applied to the inverse problem of obtaining spectra from a 5-channel, filtered array of x-ray detectors (XRD's). This diagnostic is routinely fielded on the Z facility at Sandia National Laboratories to study soft x-ray photons ({le}2300 eV), emitted by high density Z-pinch plasmas. The BG method defines spectral resolution limits on the system of response functions that are in good agreement with the unfold method currently in use. The resolution so defined is independent of the source spectrum. For noise-free, simulated data the BG approximating function is also in reasonable agreement with the source spectrum (150 eV black-body) and the unfold. This function may be used as an initial trial function for iterative methods or a regularization model.

More Details

Operation of a Five-Stage 40,000-CM(2)-Area Insulator Stack at 158 KV/CM

Stygar, William A.

We have demonstrated successful operation of a 3.35- m-diameter insulator stack at 158 kV/cm on five consecutive Z-accelerator shots. The stack consisted of five +45°-profile 5.715-cm-thick cross-linked-polystyrene (Rexolite- 1422) insulator rings, and four anodized- aluminum grading rings shaped to reduce the field at cathode triple junctions. The width of the voltage pulse at 89% of peak was 32 ns. We compare this result to a new empirical flashover relation developed from previous small-insulator experiments conducted with flat unanodized electrodes. The relation predicts a 50% flashover probability for a Rexolite insulator during an applied voltage pulse when Emaxe-0.27/d(teffC)1/10 = 224, where Emax is the peak mean electric field (kV/cm), d is the insulator thickness (cm), teff is the effective pulse width (ps), and C is the insulator circumference (cm). We find the Z stack can be operated at a stress at least 19% higher than predicted. This result, and previous experiments conducted by Vogtlin, suggest anodized electrodes with geometries that reduce the field at both anode and cathode triple junctions would improve the flashover strength of +45° insulators.

More Details

D-dot and B-dot monitors for Z-vacuum-section power-flow measurements

Stygar, William A.

The 36-module Z accelerator--designed to drive z-pinch loads at currents up to 20 MA--is contained in a 33-m-diameter tank with oil, water, and vacuum sections. The peak total forward-going power in the 36 water-section bi-plate transmission lines is approximately 63 TW. nine transmission lines deliver power to each of the four vacuum-section levels (referred to as levels A (the uppermost), B, C, and D). New differential D-dot and B-dot monitors were developed for the Z vacuum section. The D-dots measure voltage at the insulator stack. The B-dots measure current at the stack and in the outer magnetically-insulated transmission lines. Each monitor has two outputs that allow common-mode noise to be canceled to first order. The differential D-dot has one signal and one noise channel; the differential B-dot has two signal channels with opposite polarities. Each of the two B-dot sensors in the differential B-dot monitor has four 3-mm-diameter loops and is encased in copper to reduce flux penetration. For both types of probes, two 2.2-mm-diameter coaxial-cables connect the outputs to a Prodyn balun for common-mode-noise rejection. The cables provide reasonable bandwidth and generate acceptable levels of Compton drive in Z`s bremsstrahlung field. A new cavity B-dot is being developed to measure the total Z current 4.3 cm from the axis of the z-pinch load. All of the sensors are calibrated with 2--4% accuracy. The monitor signals are reduced with Barth or Weinschel attenuators, recorded on Tektronix 0.5-ns/sample digitizing oscilloscopes, and software cable compensated and integrated.

More Details

Design and performance of the Z magnetically-insulated transmission lines

Stygar, William A.

The 36-module Z accelerator was designed to drive z-pinch loads for weapon-physics and inertial-confinement-fusion experiments, and to serve as a testing facility for pulsed-power research required to develop higher-current drivers. The authors have designed and tested a 10-nH 1.5-m-radius vacuum section for the Z accelerator. The vacuum section consists of four vacuum flares, four conical 1.3-m-radius magnetically-insulated transmission lines, a 7.6-cm-radius 12-post double-post-hole convolute which connects the four outer MITLs in parallel, and a 5-cm-long inner MITL which connects the output of the convolute to a z-pinch load. IVORY and ELECTRO calculations were performed to minimize the inductance of the vacuum flares with the constraint that there be no significant electron emission from the insulator-stack grading rings. Iterative TLCODE calculations were performed to minimize the inductance of the outer MITLs with the constraint that the MITL electron-flow-current fraction be {le} 7% at peak current. The TLCODE simulations assume a 2.5 cm/{micro}s MITL-cathode-plasma expansion velocity. The design limits the electron dose to the outer-MITL anodes to 50 J/g to prevent the formation of an anode plasma. The TLCODE results were confirmed by SCREAMER, TRIFL, TWOQUICK, IVORY, and LASNEX simulations. For the TLCODE, SCREAMER, and TRIFL calculations, the authors assume that after magnetic insulation is established, the electron-flow current launched in the outer MITLs is lost at the convolute. This assumption has been validated by 3-D QUICKSILVER simulations for load impedances {le} 0.36 ohms. LASNEX calculations suggest that ohmic resistance of the pinch and conduction-current-induced energy loss to the MITL electrodes can be neglected in Z power-flow modeling that is accurate to first order. To date, the Z vacuum section has been tested on 100 shots. They have demonstrated they can deliver a 100-ns rise-time 20-MA current pulse to the baseline z-pinch load.

More Details

An ion movie camera for particle-beam-fusion experiments

Stygar, William A.

A camera with 3-ns time resolution -- and a continuous (> 100-ns) record length -- has been developed to image a 10{sup 12}-10{sup 13} W/cm{sup 2} ion beam for inertial-confinement-fusion experiments. A thin gold Rutherford-scattering foil placed in the path of the beam scatters ions into the camera. The foil is in a near-optimized scattering geometry and reduces the beam intensity seven orders of magnitude. The scattered ions are pinhole imaged onto a 2-D array of 39 p-i-n diode detectors. The output of each detector is recorded on a LeCroy 6880 transient-waveform digitizer. The waveforms are analyzed and combined to produce a 39-pixel movie which can be displayed on an image processor to provide, for example, time-resolved horizontal- and vertical-focusing information.

More Details
Results 201–209 of 209
Results 201–209 of 209