Publications

Results 1–25 of 27

Search results

Jump to search filters

Mechanical and poroelastic behavior of porous tuff under drained and undrained conditions

Bulletin of Engineering Geology and the Environment

Bauer, Stephen J.; Broome, Scott T.; Kibikas, William M.; Wilson, Jennifer E.

A series of drained and undrained water-saturated constant mean-stress tests were performed to investigate the strength, elasticity, and poroelastic response of a water-saturated high porosity nonwelded tuff. Drained strengths are found to increase with increasing effective confining pressures. Elastic moduli increase with increasing mean stress. Undrained strengths are small due to development of high pore pressures that generate low effective confining pressures. Skempton’s values are pressure dependent and appear to reflect the onset of inelastic deformation. Permeabilities decrease after deformation from ∼ 10–14 to ∼ 10–16 m2 and are a function of the applied confining pressure. Deformation is dominated by pore collapse, compaction, and intense microfracturing, with the undrained tests favoring microfracture-dominant deformation and the drained tests favoring compaction-dominant deformation. These property determinations and observations are used to develop/parameterize physics-based models for underground explosives testing.

More Details

Time-dependent thermal degradation of lost circulation materials in geothermal systems

Geothermics

Kibikas, William M.; Chang, Chun; Bauer, Stephen J.; Nakagawa, Seiji; Dobson, Patrick; Kneafsey, Timothy; Samuel, Abraham

Treatment of lost circulation can represent anywhere from 5 to 25 % of the cost in drilling geothermal wells. The cost of the materials used for lost circulation treatment is less important than their effectiveness at reducing fluid losses. In geothermal systems, the high temperatures (>90 °C) are expected to degrade many commonly used lost circulation materials over time. This degradation could compromise different materials ability to mitigate fluid loss, creating more non-productive time as multiple treatments are needed, but may result in recovering desired permeability zones within the reservoir section over time. This research aimed to study how thermal degradation of eight different lost circulation materials affected their properties relevant to sealing loss zones in geothermal wells. Mass loss experiments were conducted with each material at temperatures of 90–250 °C for 1–42 days to measure the breakdown of the material at geothermal conditions, collecting gases during several experiments to determine the waste produced during degradation. Compaction experiments were conducted with the degraded materials to show how temperatures reduced the rigidity and increased packing of the materials. Viscosity tests were conducted to show the impact of different materials on drilling fluid rheology. Microscope observations were conducted to characterize the alterations to each material due to thermal degradation. Organic materials tend to degrade more than inorganic materials, with organics like microcellulose, cotton seed hulls and sawdust losing 30–50 % of their mass after 1 day of heating at 200 °C, while inorganics like magma fiber only lose ∼5–10 % of its mass after one day of heating at 200 °C. Granular materials are the strongest when compacted despite any mass loss, while fibrous and flaky materials are fairly weak and breakdown easily under stress. The materials do not generally affect fluid rheology unless they have a viscosifying agent as part of the mixture. Microscopic analysis showed that more rigid materials like microcellulose and cedar fiber degrade in brittle manners with splitting and fracturing, while others like cotton seed hulls degrade in more ductile manners forming meshes or clumps of material. The thermal breakdown of lost circulation materials tested suggests that each material should also be classified by its degree of thermal degradability, as at certain temperatures the materials can lose the capability to bridge loss zones around the wellbore.

More Details

LYNM-PE1 Seismic Parameters from Borehole Log, Laboratory, and Tabletop Measurements

Wilson, Jennifer E.; Bodmer, Miles; Townsend, Margaret J.; Choens II, Robert C.; Bartlett, Tara; Dietel, Matthew; Downs, Nicholas M.; Foulk, James W.; Smith, Devon; Larotonda, Jennifer M.; Jaramillo, Johnny L.; Barrow, Perry C.; Kibikas, William M.; Sam, Robert C.W.P.; Broome, Scott T.; Davenport, Kathy

The goal of this work is to provide a database of quality-checked seismic parameters that can be integrated with the Geologic Framework Model (GFM) for the LYNM-PE1 (Low Yield Nuclear Monitoring – Physical Experiment 1) testbed. We integrated data from geophysical borehole logs, tabletop measurements on collected core, and laboratory measurements. We reviewed for internal consistency among each measurement type, documented the caveats of measurement conditions, and integrated lithologic logs to check the validity of outlier values. The resulting consolidated parameter tables can be used as inputs for modeling and analysis codes and are designed to interface with the GFM, which is being actively developed.

More Details

Helium Gas Release by Rocks Undergoing Crushing

58th US Rock Mechanics / Geomechanics Symposium 2024, ARMA 2024

Kibikas, William M.; Paul, Matthew J.; Wilson, Jennifer E.; Kruichak-Duhigg, Jessica N.; Broome, Scott T.

Geogenic gases often reside in intergranular pore space, fluid inclusions, and within mineral grains. In particular, helium-4 (4He) is generated by alpha decay of uranium and thorium in rocks. The emitted 4He nuclei can be trapped in the rock matrix or in fluid inclusions. Recent work has shown that releases of helium occur during plastic deformation of crustal rocks above atmospheric concentrations that are detectable in the field. However, it is unclear how rock type and deformation modalities affect the cumulative gas released. This work seeks to address how different deformation modalities observed in several rock types affect release of helium. Axial compression tests with granite, rhyolite, tuff, dolostone, and sandstone - under vacuum conditions - were conducted to measure the transient release of helium from each sample during crushing. It was found that, when crushed up to 97500 N, each rock type released helium at a rate quantifiable using a helium mass spectrometer leak detector. For plutonic rock like granite, helium flow rate spikes with the application of force as the samples elastically deform until fracture, then decays slowly until grain breakdown comminution begins to occur. Both the rhyolite and tuff do not experience such large spikes in helium flow rate, with the rhyolites fracturing at much lower force and the tuffs compacting instead of fracturing due to their high porosity. Both rhyolite and tuff instead experience a lesser but steady helium release as they are crushed. The cumulative helium release for the volcanic tuffs varies as much as two orders of magnitude but is fairly consistent for the denser rhyolite and granite tested. The results indicate that there is a large degassing of helium as rocks are elastically and inelastically deformed prior to fracturing. For more porous and less brittle rocks, the cumulative release will depend more on the degree of deformation applied. These results are compared with known U/Th radioisotopes in the rocks to relate the trapped helium as either produced in the rock or from secondary migration of 4He.

More Details

Water-Weakening and Time-Dependent Deformation of Organic-Rich Chalks

Rock Mechanics and Rock Engineering

Kibikas, William M.; Choens II, Robert C.; Bauer, Stephen J.; Shalev, Eyal; Lyakhovsky, Vladimir

The Ghareb Formation is a shallowly buried porous chalk in southern Israel that is being considered as a host rock for a geologic nuclear waste repository. Setup and operation of a repository will induce significant mechanical, hydrological and chemical perturbations in the Ghareb. Developing a secure repository requires careful characterization of the rock behavior to different loads. To characterize hydromechanical behavior of the Ghareb, several short- and long-term deformation experiments were conducted. Hydrostatic loading tests were conducted both dry and water-saturated, using different setups to measure elastic properties, time-dependent behavior, and permeability. A set of triaxial tests were conducted to measure the elastic properties and rock strength under differential loading at dry and water-saturated conditions. The hydrostatic tests showed the Ghareb began to deform inelastically around 12–15 MPa, a relatively low effective pressure. Long-term permeability measurements demonstrated that permeability declined with increasing effective pressure and was permanently reduced by ~ 1 order of magnitude after unloading pressure. Triaxial tests showed that water saturation significantly degrades the rock properties of the Ghareb, indicating water-weakening is a significant risk during repository operation. Time-dependent deformation is observed during hold periods of both the hydrostatic and triaxial tests, with deformation being primarily visco-plastic. The rate of deformation and permeability loss is strongly controlled by the effective pressure as well. Additionally, during holds of both hydrostatic and triaxial tests, it is observed that when water-saturated, radial strain surpassed axial strain when above effective pressures of 13–20 MPa. Thus, deformation anisotropy may occur in situ during operations even if the stress conditions are hydrostatic when above this pressure range.

More Details

Development of Chemical-Encapsulating Microparticles for Delayed Flow Diverter Formation in EGS Reservoirs Away from Wells

Transactions - Geothermal Resources Council

Chang, Chun; Nakagawa, Seiji; Kibikas, William M.; Kneafsey, Timothy; Dobson, Patrick; Samuel, Abraham; Otto, Michael; Bruce, Stephen; Kaargeson-Loe, Nils

Although enhancing permeability is vital for successful development of an Enhanced Geothermal System (EGS) reservoir, high-permeability pathways between injection and production wells can lead to short-circuiting of the flow, resulting in inefficient heat exchange with the reservoir rock. For this reason, the permeability of such excessively permeable paths needs to be reduced. Controlling the reservoir permeability away from wells, however, is challenging, because the injected materials need to form solid plugs only after they reach the target locations. To control the timing of the flow-diverter formation, we are developing a technology to deliver one or more components of the diverter-forming chemicals in microparticles (capsules) with a thin polymer shell. The material properties of the shell are designed so that it can withstand moderately high temperatures (up to ~200°C) of the injected fluid for a short period of time (up to ~30 minutes), but thermally degrades and releases the reactants at higher reservoir temperatures. A microfluidic system has been developed that can continuously produce reactant-encapsulating particles. The diameter of the produced particles is in the range of ~250-650 μm, which can be controlled by using capillary tubes with different diameters and by adjusting the flow rates of the encapsulated fluid and the UV-curable epoxy resin for the shell. Preliminary experiments have demonstrated that (1) microcapsules containing chemical activators for flow-diverter (silicate gel or metal silicate) formation can be produced, (2) the durability of the shell can be made to satisfy the required conditions, and (3) thermal degradation of the shell allows for release of the reaction activators and control of reaction kinetics in silica-based diverters.

More Details

Thermal-Hydrological-Mechanical Characterization of the Ghareb Formation at Conditions of High-Level Nuclear Waste Disposal

56th U.S. Rock Mechanics/Geomechanics Symposium

Kibikas, William M.; Bauer, Stephen J.; Choens II, Robert C.; Shalev, E.; Lyakhovsky, V.

The Ghareb Formation in the Yasmin Plain of Israel is under investigation as a potential disposal rock for nuclear waste disposal. Triaxial deformation tests and hydrostatic water-permeability tests were conducted with samples of the Ghareb to assess relevant thermal, hydrological, and mechanical properties. Axial deformation tests were performed on dry and water-saturated samples at effective pressures ranging from 0.7 to 19.6 MPa and temperatures of 23 ℃ and 100 ℃, while permeability tests were conducted at ambient temperatures and effective pressures ranging from 0.7 to 20 MPa. Strength and elastic moduli increase with increasing effective pressure for the triaxial tests. Dry room temperature tests are generally the strongest, while the samples deformed at 100 ℃ exhibit large permanent compaction even at low effective pressures. Water permeability decreases by 1-2 orders of magnitude under hydrostatic conditions while experiencing permanent volume loss of 4-5%. Permeability loss is retained after unloading, resulting from permanent compaction. A 3-D compaction model was used to demonstrate that compaction in one direction is associated with de-compaction in the orthogonal directions. The model accurately reproduces the measured axial and transverse strain components. The experimentally constrained deformational properties of the Ghareb will be used for 3-D thermal-hydrological-mechanical modelling of borehole stability.

More Details

Thermal Expansion, Fluid Flow, and Thermal Shock of Cement and a Cement/Steel Interface at Elevated Pressure and Temperature

Transactions - Geothermal Resources Council

Bauer, Stephen J.; Barrow, Perry C.; Kibikas, William M.; Pyatina, Tatiana; Sugama, Toshifumi

A critical parameter for the well integrity in geothermal storage and production wells subjected to frequent thermal cycling is the interface between the steel and cement. In geothermal energy storage and energy production wells an insulating cement sheath is necessary to minimize heat losses through the heat uptake by cooler rock formations with high thermal conductivity. Also critical parameters for the well integrity in geothermal storage and production wells subjected to frequent thermal cycling is the interface between metal casing and cement composite. A team from Sandia and Brookhaven National Labs is evaluating special cement formulations to facilitate use during severe and repeated thermal cycling in geothermal wells; this paper reports on recent finding using these more recently developed cements. For this portion of the laboratory study we report on preliminary results from subjecting this cement to high temperature (T> 200°C), at a confining pressure of 13.8 MPa, and pore water pressure of 10.4 MPa. Building on previous work, we studied two sample types; solid cement and a steel cylinder sheathed with cement. In the first sample type we measured fluid flow at increasing elevated temperatures and pressure. In the second sample type, we flowed water through the inside of the steel cylinder rapidly to develop an inner to outer thermal gradient using this specialized test geometry. In the paper we report on water permeability estimates at elevated temperatures and the results of rapid thermal cycling of a steel/cement interface. Posttest observations of the steel-cement interface reveal insight into the nature of the steel/cement bond.

More Details
Results 1–25 of 27
Results 1–25 of 27