Publications

Results 201–249 of 249

Search results

Jump to search filters

Bio micro fuel cell grand challenge final report

Apblett, Christopher A.; Novak, Jim; Hudgens, James J.; Podgorski, Jason; Brozik, Susan M.; Flemming, Jeb H.; Ingersoll, David; Eisenbies, Stephen E.; Shul, Randy J.; Cornelius, Christopher J.; Fujimoto, Cy; Schubert, William K.; Hickner, Michael A.; Volponi, Joanne V.; Kelly, Michael J.; Zavadil, Kevin R.; Staiger, Chad L.; Dolan, Patricia L.; Harper, Jason C.; Doughty, Daniel H.; Casalnuovo, Stephen A.; Kelley, John B.; Simmons, Blake; Borek, Theodore T.; Meserole, Stephen; Alam, Todd M.; Cherry, Brian R.; Roberts, Greg

Abstract not provided.

Location and orientation of adsorbed molecules in zeolites from solid-state REAPDOR NMR

Proposed for presentation at the

Holland, Gregory P.; Alam, Todd M.

The use of rotational echo adiabatic passage double resonance (REAPDOR) solid-state nuclear magnetic resonance (NMR) to determine the site location of an adsorbed polar molecule in a zeolite cage is presented. Nitrogen-15 labeled ammonia is used as a probe molecule to characterize the initial adsorption site in 3A zeolite molecular sieves. The relative position of the ammonia adsorption site in the cage is determined by measuring the internuclear distance between the N on ammonia and both a Na cation site and an Al framework environment using {sup 15}N/{sup 23}Na and {sup 15}N/{sup 27}Al REAPDOR NMR experiments, respectively. The measured internuclear distances are similar to a specific ammonia adsorption site for the zeolite 4A ammonia sorption complex located using X-ray diffraction. Additional details regarding the ammonia hydrogen-bonding environment can be extracted from {sup 1}H/{sup 23}Na and {sup 1}H/{sup 27}Al REAPDOR NMR measurements.

More Details

Relaxation nuclear magnetic resonance imaging (R-NMRI) of desiccation in M9787 silicone pads

Alam, Kathleen M.; Alam, Todd M.; Cherry, Brian R.

The production and aging of silicone materials remains an important issue in the weapons stockpile due to their utilization in a wide variety of components and systems within the stockpile. Changes in the physical characteristics of silicone materials due to long term desiccation has been identified as one of the major aging effects observed in silicone pad components. Here we report relaxation nuclear magnetic resonance imaging (R-NMRI) spectroscopy characterization of the silica-filled and unfilled polydimethylsiloxane (PDMS) and polydiphenylsiloxane (PDPS) copolymer (M9787) silicone pads within desiccating environments. These studies were directed at providing additional details about the heterogeneity of the desiccation process. Uniform NMR spin-spin relaxation time (T2) images were observed across the pad thickness indicating that the drying process is approximately uniform, and that the desiccation of the M9787 silicone pad is not a H2O diffusion limited process. In a P2O5 desiccation environment, significant reduction of T2 was observed for the silica-filled and unfilled M9787 silicone pad for desiccation up to 225 days. A very small reduction in T2 was observed for the unfilled copolymer between 225 and 487 days. The increase in relative stiffness with desiccation was found to be higher for the unfilled copolymer. These R-NMRI results are correlated to local changes in the modulus of the material

More Details

Analytical investigation of AlCl[3]/SO[2]Cl[2] catholyte materials for secondary fuze reserve batteries

Boyle, Timothy; Segall, Judith M.; Cherry, Brian R.; Butler, Paul C.; Alam, Todd M.; Tallant, David R.; Malizia Jr., Louis A.; Rodriguez, Mark A.; Ingersoll, David; Clark, Nancy H.; Garcia, Manuel J.; Simpson, Regina L.

Exploration of the fundamental chemical behavior of the AlCl{sub 3}/SO{sub 2}Cl{sub 2} catholyte system for the ARDEC Self-Destruct Fuze Reserve Battery Project under accelerated aging conditions was completed using a variety of analytical tools. Four different molecular species were identified in this solution, three of which are major. The relative concentrations of the molecular species formed were found to depend on aging time, initial concentrations, and storage temperature, with each variable affecting the kinetics and thermodynamics of this complex reaction system. We also evaluated the effect of water on the system, and determined that it does not play a role in dictating the observed molecular species present in solution. The first Al-containing species formed was identified as the dimer [Al({mu}-Cl)Cl{sub 2}]{sub 2}, and was found to be in equilibrium with the monomer, AlCl{sub 3}. The second species formed in the reaction scheme was identified by single crystal X-ray diffraction studies as [Cl{sub 2}Al({mu}-O{sub 2}SCl)]{sub 2} (I), a scrambled AlCl{sub 3}{center_dot}SO{sub 2} adduct. The SO{sub 2}(g) present, as well as CL{sub 2}(g), was formed through decomposition of SO{sub 2}CL{sub 2}. The SO{sub 2}(g) generated was readily consumed by AlCl{sub 3} to form the adduct 1 which was experimentally verified when 1 was also isolated from the reaction of SO{sub 2}(g) and AlCl {sub 3}. The third species found was tentatively identified as a compound having the general formula {l_brace}[Al(O)Cl{sub 2}][OSCl{sub 2}]{r_brace}{sub n}. This was based on {sup 27}Al NMR data that revealed a species with tetrahedrally coordinated Al metal centers with increased oxygen coordination and the fact that the precipitate, or gel, that forms over time was shown by Raman spectroscopic studies to possess a component that is consistent with SOCl{sub 2}. The precursor to the precipitate should have similar constituents, thus the assignment of {l_brace}[Al(O)Cl{sub 2}][OSCl{sub 2}]{r_brace}{sub n}. The precipitate was further identified by solid state {sup 27}Al MAS NMR data to possess predominantly octahedral A1 metal center which implies {l_brace}[Al(O)Cl{sub 2}][OSCl{sub 2}]{r_brace}{sub n} must undergo some internal rearrangements. A reaction sequence has been proposed to account for the various molecular species identified in this complex reaction mixture during the aging process. The metallurgical welds were of high quality. These results were all visually determined there was no mechanical testing performed. However, it is recommended that the end plate geometry and weld be changed. If the present weld strength, based on .003' - .005' penetration, is sufficient for unit performance, the end plate thickness can be reduced to .005' instead of the .020' thickness. This will enable the plug to be stamped so that it can form a cap rather than a plug and solve existing problems and increase the amount of catholyte which may be beneficial to battery performance.

More Details

Quantification of ammonia binding sites in Davison (Type 3A) zeolite desiccant : a solid-state Nitrogen-15 MAS NMR spectroscopy investigation

Alam, Todd M.; Holland, Gregory P.; Cherry, Brian R.

The quantitative analysis of ammonia binding sites in the Davison (Type 3A) zeolite desiccant using solid-state {sup 15}N MAS NMR spectroscopy is reported. By utilizing 15N enriched ammonia ({sup 15}NH{sub 3}) gas, the different adsorption/binding sites within the zeolite were investigated as a function of NH{sub 3} loading. Using {sup 15}N MAS NMR multiple sites were resolved that have distinct cross-polarization dynamics and chemical shift behavior. These differences in the {sup 15}N NMR were used to characterize the adsorption environments in both the pure 3A zeolite and the silicone-molded forms of the desiccant.

More Details

Effect of non-exponential and multi-exponential decay behavior on the performance of the direct exponential curve resolution algorithm (DECRA) in NMR investigations

Journal of Chemometrics

Alam, Todd M.; Alam, Kathleen M.

The effect of non-exponential and multi-exponential decay or relaxation behavior on the performance of the direct exponential curve resolution algorithm (DECRA) is investigated through a series of numerical simulations. Three different combinations of decay or relaxation behavior were investigated through DECRA analysis of simulated pulse gradient spin echo (PGSE) NMR diffusion spectra that contained the combination of two individual components. The diffusion decay behavior of one component was described by a single-exponential decay, while the second component was described by either (1) a multi-exponential decay, (2) a decay behavior described by the empirical Kohlrausch-Williams-Watts (KWW) relation or (3) a multi-exponential decay behavior correlated with variations in the NMR spectral line shape. The magnitudes and types of errors produced during the DECRA analysis of spectral data with deviations from a pure single-exponential decay behavior are presented. It is demonstrated that the deviation from single-exponential decay impacts the resulting calculated line shapes, the calculated relative concentrations and the quantitative estimation of the decay or relaxation time constants of both components present in the NMR spectra. Copyright © 2004 John Wiley & Sons, Ltd.

More Details

Quantitative Analysis of Microstructure in Polysiloxanes Using High Resolution Si29 NMR Spectroscopy: Investigation of Lot Variability in the LVM97 and HVM97 PDMS/PDPS Copolymers

Alam, Todd M.

The quantitative analysis of microstructure and sequence distribution in polysiloxane copolymers using high-resolution solution {sup 29}Si NMR is reported. Copolymers containing dimethylsiloxane (DMS) and diphenysiloxane (DPS) monomer units prepared with either high vinyl content (HVM) or low vinyl content (LVM) were analyzed. The average run length (R{sub exp}), the number average sequence length (l{sub A}, l{sub B}), along with the various linkage probabilities (p{sub AA}, p{sub AB}, p{sub BA}, and p{sub BB}) were determined for different production lots of the LVM97 and HVM97 samples to address the lot variability of microstructure in these materials.

More Details

Chemometric analysis of nuclear magnetic resonance spectroscopy data

Spectroscopy (Santa Monica)

Alam, Todd M.; Alam, Kathleen M.

Chemometric analysis of nuclear magnetic resonance (NMR) spectroscopy has increased dramatically in recent years. Various chemometric techniques have been applied to a wide range of problems in food, agricultural, medical, process, and industrial system. This article gives a brief review of chemometric analysis of NMR spectral data, including a summary of the types of mixtures and experiments analyzed with chemometric techniques. Common experiment problems encountered during the chemometric analysis of NMR data are also discussed.

More Details

{sup 203,205}Tl NMR Studies of Crystallographically Characterized Thallium Alkoxides. X-Ray Structures of [Tl(OCH{sub 2}CH{sub 3})]4 and [Tl(OAr)]{sub infinity} where OAr = OC{sub 6}H{sub 3}(Me){sub 2}-2,6 and OC{sub 6}H{sub 3}(Pr{sup i}){sub 2}-2,6

Inorganic Chemistry

Zechmann, Cecilia A.; Boyle, Timothy; Pedrotty, Dawn M.; Alam, Todd M.; Lang, David P.

[Tl(OCH{sub 2}CH{sub 3})]{sub 4}, (1) was reacted with excess HOR to prepare a series of [Tl(OR)]{sub n} where OR= OCHMe{sub 2} (2, n = 4), OCMe{sub 3} (3, n = 4), OCH{sub 2}CMe{sub 3} (4, n = 4), OC{sub 6}H{sub 3}(Me){sub 2}-2,6 (5, n = {infinity}), and OC{sub 6}H{sub 3}(Pr{sup i}){sub 2}-2,6 (6, n = {infinity}). Single crystal X-ray diffraction was used to determine the structure of compounds ligated by more sterically demanding ligands. Compound 4 was found to adopt a cubane structure, while 5 and 6 formed linear polymeric structures. These compounds were additionally characterized by {sup 203,205}Tl solution and {sup 205}Tl solid state NMR. Compounds 1--4 were found to remain intact in solution while the polymeric species, 5 and 6, appeared to be fluxional. While variations in the solution and solid state structures for the tetrameric [Tl(OR)]{sub 4} and polymeric [Tl(OAr)]{sub {infinity}} may be influenced by the steric hindrance of their respective ligands, the covalency of the species is believed to be more an effect of the parent alcohol acidity.

More Details

Analysis of Hydroperoxides in solid Polyethylene by NMR and EPR Spectroscopy

Assink, Roger A.; Celina, Mathew C.; Alam, Todd M.; Clough, Roger L.; Gillen, Kenneth T.

The authors have shown that the hydroperoxide species in {gamma}-irradiated {sup 13}C-polyethylene can be directly observed by {sup 13}C MAS NMR spectroscopy. The experiment was performed without the need for special sample preparation such as chemical derivatization or dissolution. Annealing experiments were employed to study the thermal decomposition of the hydroperoxide species and to measure an activation energy of 98 kJ/mol. EPR spectroscopy suggests that residual polyenyl and alkylperoxy radicals are predominantly trapped in interracial or crystalline regions, while the peroxy radicals observed after UV-photolysis of hydroperoxides are in amorphous regions.

More Details

Structural Diversity in Lithium Aryloxides, Part 1. Structurally Characterized [Li(OAr)(THF){sub x}]{sub n} where OAr = OC{sub 6}H{sub 5}, OC{sub 6}H{sub 4}(2-Me), OC{sub 6}H{sub 3}(2,6-Me){sub 2}, OC{sub 6}H{sub 4}(2-Pr{sup i}), OC{sub 6}H{sub 3}(2,6-Pr{sup i}){sub 2}, OC{sub 6}H{sub 4}(2-Bu{sup t}), OC{sub 6}H{sub 3}(2,6-Bu{sup t}){sub 2}

Inorganic Chemistry

Boyle, Timothy; Pedrotty, Dawn M.; Alam, Todd M.; Rodriguez, Mark A.

Abstract not provided.

Molecular dynamic simulations of the lithium coordination environment in phosphate glasses

Physical Chemistry and Chemical Physics

Alam, Todd M.; Liang, Jianjie; Cygan, Randall T.

A molecular dynamics (MD) study of the lithium ultraphosphate glass series, xLi{sub 2}O{center_dot}(1{minus}x)P{sub 2}O{sub 5} (0 {le} x < 0.5) was used to investigate the changes in the Li environment with increasing modifier concentration. The results from the MD simulations indicate that no major structural variations in the Li coordination environment are observed. Changes in the type of oxygen coordinated to the modifier are observed and correlate with the T{sub g} minimum. Additionally, changes in the number of shared phosphorus vertices are observed with increasing modifier concentration, in support of recent models involving the role of the modifier in the extended range structure of phosphate glasses. Empirical calculations of the {sup 6}Li NMR chemical shifts directly from the MD simulation structures is also reported and compared to recent experimental solid-state NMR results.

More Details

Structural diversity in lithium aryloxides, Part 2

Inorganic Chemistry

Boyle, Timothy; Pedrotty, Dawn M.; Alam, Todd M.; Rodriguez, Mark A.

A series of arylalcohols [H-OAr where OAr = OC{sub 6}H{sub 5} (OPh), OC{sub 6}H{sub 4}(2-Me) (oMP), OC{sub 6}H{sub 3}(2,6-Me){sub 2} (DMP), OC{sub 6}H{sub 4}(2-Pr{prime}) (oPP), OC{sub 6}H{sub 3}(2,6-Pr{prime}){sub 2} (DIP), OC{sub 6}H{sub 4}(2-Bu{prime}) (oBP), OC{sub 6}H{sub 3}(2,6-Bu{prime}){sub 2} (DBP) where Me = CH{sub 3}, Pr{prime} = CHMe{sub 2}, and Bu{prime} = CMe{sub 3}] were reacted with LiN(SiMe{sub 3}){sub 2} in pyridine (py) to generate the appropriate ``Li(OAr)(py){sub x}'' complex. The resultant products were characterized by single crystal X-ray diffraction as: [Li(OPh)(py){sub 2}]{sub 2} (1), [Li(oMP)(py){sub 2}]{sub 2} (2), [Li(DMP)(py){sub 2}]{sub 2} (3), [Li(oPP)(py){sub 2}]{sub 2} (4), [Li(DIP)(py){sub 2}]{sub 2} (5), [Li(oBP)(py){sub 2}]{sub 2} (6), and [Li(DBP)(py)]{sub 2} (7). Compounds 1--6 adopt a dinuclear, edge-shared tetrahedral complex. For 7, due to the steric crowding of the DBP ligand, only one py is coordinated yielding a dinuclear fused trigonal planar arrangement. Two additional structure types were also characterized for the DIP ligand as [Li(DIP)(H-DIP)(py)]{sub 2} (5b) and [Li{sub 2}(DIP){sub 2}(py){sub 3}] (5c). {sup 6,7}Li and {sup 13}C NMR solid state MAS spectroscopy indicated that the bulk powder was consistent with the crystalline material. Solution state NMR spectroscopy revealed a symmetric molecule existed in solution for 1--7.

More Details

Solid state {sup 31}P/{sup 27}Al and {sup 31}P/{sup 23}Na MAS NMR dipolar dephasing investigations of connectivity in sodium aluminophosphate glasses

The Journal of Physical Chemistry B

Lang, David P.; Alam, Todd M.; Bencoe, Denise N.

Solid state {sup 31}P/{sup 27}Al and {sup 31}P/{sup 23}Na MAS NMR dipolar dephasing experiments have been used to investigate the spatial distribution of aluminum and sodium cations with respect to the phosphate backbone for a series of sodium aluminophosphate glasses, xAl{sub 2}O{sub 3}{center_dot}50Na{sub 2}O{center_dot}(50{minus}x)P{sub 2}O{sub 5} (0{le} x {le} 17.5). From the {sup 31}P/{sup 27}Al and {sup 31}P/{sup 23}Na connectivity data gathered, information about the medium range order in these glasses is obtained. The expanded connectivity data allows for better identification and interpretation of the new resonances observed in the {sup 31}P MAS NMR spectra with the addition of alumina. The results of the dipolar dephasing experiments show that the sodium-phosphate distribution remains relatively unchanged for the glass series, and that the addition of aluminum occurs primarily through the depolymerization of the phosphate tetrahedral backbone.

More Details

Molecular dynamic simulations, {sup 6}Li solid state NMR and ultraphosphate glasses

NMR Newsletter

Alam, Todd M.

The author's laboratory continues to use NMR to investigate the structure and dynamics in amorphous materials, including the local structure of ultraphosphate glasses. Changes in the alkali environment in these phosphate glasses as a function of modifier concentration has recently been probed using {sup 6}Li and {sup 23}Na solid state NMR. Molecular dynamic (MD) simulations have also been performed in an attempt to gain additional insight into the variations of the local structure. Interestingly, although there are distinct variations in the Li coordination number as well as the Li-O bond lengths in the MD simulations (with a minimum or maximum in these parameters near the 20% Li{sub 2}O concentration), a linear change in the {sup 6}Li NMR chemical shift is observed between 5 and 50% Li{sub 2}O mole fraction. One would expect that such variations should be observable in the NMR chemical shift. In an attempt to understand this behavior the author has performed empirical calculation of the {sup 6}Li NMR chemical shift directly from the structures obtained in the MD simulations. It has been argued that the NMR chemical shift of alkali species can be related to a chemical shift parameter A, where A is defined as the summation of the shift contributions for all the oxygens located within the first (and possibly the second) coordination sphere around the cation. For the present case of Li phosphate glasses, the chemical shift correlates directly to the bond valence of the coordinating oxygen.

More Details

{sup 17}O NMR investigation of oxidative degradation in polymers under gamma-irradiation

Radiation Physics and Chemistry

Alam, Todd M.; Celina, Mathew C.; Assink, Roger A.; Clough, Roger L.; Gillen, Kenneth T.

The {gamma}-irradiated-oxidation of pentacontane (C{sub 50}H{sub 102}) and the polymer polyisoprene was investigated as a function of oxidation level using {sup 17}O nuclear magnetic resonance (NMR) spectroscopy. It is demonstrated that by using {sup 17}O labeled O{sub 2} gas during the {gamma}-irradiation process, details about the oxidative degradation mechanisms can be directly obtained from the analysis of the {sup 17}O NMR spectra. Production of carboxylic acids is the primary oxygen-containing functionality during the oxidation of pentacontane, while ethers and alcohols are the dominant oxidation product observed for polyisoprene. The formation of ester species during the oxidation process is very minor for both materials, with water also being produced in significant amounts during the radiolytic oxidation of polyisoprene. The ability to focus on the oxidative component of the degradation process using {sup 17}O NMR spectroscopy demonstrates the selectivity of this technique over more conventional approaches.

More Details

Solid state {sup 31}P NMR study of phosphonate binding sites in guanidine-functionalized, molecular imprinted silica xerogels

Sasaki, Darryl Y.; Alam, Todd M.

Phosphonate binding sites in guanidine and ammonium surface-functionalized silica xerogels were prepared via the molecular imprinting technique and characterized using solid state {sup 31}P MAS NMR. One-point, two-point, and non-specific host-guest interactions between phenylphosphonic acid (PPA) and the functionalized gels were distinguished by characteristic chemical shifts of the observed absorption peaks. Using solid state as well as solution phase NMR analyses, absorptions observed at 15.5 ppm and 6.5 ppm were identified as resulting from the 1:1 (one-point) and 2:1 (two-point) guanidine to phosphonate interactions, respectively. Similar absorptions were observed with the ammonium functionalized gels. By examining the host-guest interactions within the gels, the efficiency of the molecular imprinting procedure with regard to the functional monomer-to-template interaction could be readily assessed. Template removal followed by substrate adsorption studies conducted on the guanidine functionalized gels provided a method to evaluate the binding characteristics of the receptor sites to a phosphonate substrate. During these experiments, {sup 29}Si and {sup 31}P MAS NMR acted as diagnostic monitors to identify structural changes occurring in the gel matrix and at the receptor site from solvent mediated processes.

More Details

Monte Carlo simulations of phosphate polyhedron connectivity in glasses

Journal of Non-Crystalline Solids

Alam, Todd M.

Monte Carlo (MC) simulations of phosphate tetrahedron connectivity distributions in alkali and alkaline earth phosphate glasses are reported. By utilizing a discrete bond model, the distribution of next-nearest neighbor connectivities between phosphate polyhedron for random, alternating and clustering bonding scenarios was evaluated as a function of the relative bond energy difference. The simulated distributions are compared to experimentally observed connectivities reported for solid-state two-dimensional (2D) exchange and double-quantum (2Q) nuclear magnetic resonance (NMR) experiments of phosphate glasses. These MC simulations demonstrate that the polyhedron connectivity is best described by a random distribution in lithium phosphate and calcium phosphate glasses.

More Details

Monte Carlo Simulations of Phosphate Polyhedron Connectivity in Glasses

Journal of Non-Crystalline Solids

Alam, Todd M.

Monte Carlo simulations of phosphate tetrahedron connectivity distributions in alkali and alkaline earth phosphate glasses are reported. By utilizing a discrete bond model, the distribution of next-nearest neighbor connectivities between phosphate polyhedron for random, alternating and clustering bonding scenarios was evaluated as a function of the relative bond energy difference. The simulated distributions are compared to experimentally observed connectivities reported for solid-state two-dimensional exchange and double-quantum NMR experiments of phosphate glasses. These Monte Carlo simulations demonstrate that the polyhedron connectivity is best described by a random distribution in lithium phosphate and calcium phosphate glasses.

More Details

Modifier coordination and phosphate glass networks

Alam, Todd M.

The addition of up to approximately 16 mole% Cs{sub 2}O to vitreous P{sub 2}O{sub 5} reduces the glass transition temperature (T{sub g}) by 150 K, whereas further additions up to 50 mole% produce little additional change in T{sub g}. {sup 31}P magic angle spinning nuclear magnetic resonance spectra indicate that the phosphate network is progressively dipolymerized over the entire range of compositions. The property trend is explained by a transition in the Cs{sup +} coordination environment, from isolated Cs-polyhedra below {approximately}16 mole% Cs{sub 2}O to a corner-sharing Cs-polyhedral sub-structure in the glasses with greater Cs{sub 2}O contents. This modifier transition does not occur in Al-phosphate glasses. {sup 27}Al MAS NMR spectra indicate that the average Al coordination number decreases with increasing Al{sub 2}O{sub 3} content to avoid the formation of Al-O-Al bonds in these binary phosphate glasses.

More Details

Analysis of Hydroperoxides in Solid Polyethylene by MAS (13)C NMR and EPR

Macromolecules

Assink, Roger A.; Celina, Mathew C.; Dunbar, Timothy D.; Alam, Todd M.; Clough, Roger L.; Gillen, Kenneth T.

{sup 13}C-enriched polyethylene was subjected to {gamma}-irradiation in the presence of air at 25 and 80 C for total doses ranging from 71 to 355 kGy. Significant quantities of hydroperoxides were detected in the 25 C irradiated sample by {sup 13}C magic angle spinning NMR spectroscopy. This method of detection was performed on the solid polymer and required no chemical derivatization or addition of solvent. The chemical stability and subsequent products of the hydroperoxide species were studied by annealing the irradiated samples in air at temperatures ranging from 22 to 110 C. A time-temperature superposition analysis provided an activation energy of 108 kJ/mol for the hydroperoxide decomposition process. The primary products of hydroperoxide decomposition were ketones and secondary alcohols with lesser amounts of acids and esters. EPR measurements suggest that the reactive hydroperoxide species reside in the amorphous phase of polyethylene, consistent with degradation occurring in the amorphous phase.

More Details

Investigation of Sodium Distribution in Phosphate Glasses Using Spin-Echo {sup 23}Na NMR

Journal Physical Chemistry, B

Alam, Todd M.; Boyle, Timothy

The spatial arrangement of sodium cations for a series of sodium phosphate glasses, xNa{sub 2}O(100-x)P{sub 2}O{sub 5} (x<55), were investigated using {sup 23}Na spin-echo NMR spectroscopy. The spin-echo decay rate is a function of the Na-Na homonuclear dipolar coupling and is related to the spatial proximity of neighboring Na nuclei. The spin-echo decay rate in these sodium phosphate glasses increases non-linearly with higher sodium number density, and thus provides a measure of the Na-Na extended range order. The results of these {sup 23}Na NMR experiments are discussed within the context of several structural models, including a decimated crystal lattice model, cubic dilation lattice model, a hard sphere (HS) random distribution model and a pair-wise cluster hard sphere model. While the experimental {sup 23}Na spin-echo M{sub 2} are described adequately by both the decimated lattice and the random HS model, it is demonstrated that the slight non-linear behavior of M{sub 2} as a function of sodium number density is more correctly described by the random distribution in the HS model. At low sodium number densities the experimental M{sub 2} is inconsistent with models incorporating Na-Na clustering. The ability to distinguish between Na-Na clusters and non-clustered distributions becomes more difficult at higher sodium concentrations.

More Details

Empirical Calculations of {sup 29}Si NMR Chemical Shielding Tensors: A Partial Charge Model Investigation of Hydrolysis in Organically Modified Alkoxy Silanes

Physical Chemistry and Chemical Physics

Alam, Todd M.

Organically modified alkoxy silanes play an important role in tailoring different properties of silica produced by the sol-gel method. Changes in the size and functionality of the organic group allows control of both physical and chemical properties of the resulting gel, with the kinetics of the polymerization process playing an important role in the design of new siloxane materials. High resolution {sup 29}Si NMR has proven to be valuable tool for monitoring the polymerization reaction, and has been used to investigate a variety of organically modified alkoxy silane systems.

More Details

Bruker AMX Y Channel Heteronuclear Decoupling Using a Linear Amplifier

The NMR Newsletter

Alam, Todd M.

Under both static and common MAS conditions (< 15 kHz) the question of residual X-Y heteronuclear decoupling can become a complicating factor in the analysis of various NMR results. In our lab the impact of {sup 31}P-{sup 23}Na dipolar coupling on the observed {sup 23}Na M{sub 2} relaxation for a series of sodium phosphate glasses was recently investigated by employing continuous wave {sup 31}P decoupling during the entire pulse sequence. Initially these efforts were complicate by the inability to provide a gating pulse during the data acquisition using the standard Bruker nomenclature, go=2, for the acquisition loop. A pulse sequence to overcome these restrictions is given below. Our AMX400 instrument is configured with a 3 channel MCI, but utilizes a linear AMT amplifier on the 3rd channel (requiring gating pulse via the C4 program call during the entire time it is on). The standard acquisition loop has been replaced by direct adc and aq commands for data acquisition. Unlike the go=2 statement which does not allow a C4 gating command to be included, these individual acquisition commands can all include distinct C4 gating.

More Details

Investigation of Oxidative Degradation in Polymers Using (17)O NMR Spectroscopy

Macromolecules

Alam, Todd M.

The thermal oxidation of pentacontane (C{sub 50}H{sub 102}), and of the homopolymer polyisoprene, has been investigated using {sup 17}O NMR spectroscopy. By performing the oxidation using {sup 17}O labeled O{sub 2} gas, it is possible to easily identify degradation products, even at relatively low concentrations. It is demonstrated that details of the degradation mechanism can be obtained from analysis of the {sup 17}O NMR spectra as a function of total oxidation. Pentacontane reveals the widest variety of reaction products, and exhibits changes in the relative product distributions with increasing O{sub 2} consumption. At low levels of oxygen incorporation, peroxides are the major oxidation product, while at later stages of degradation these species are replaced by increasing concentrations of ketones, alcohols, carboxylic acids and esters. Analyzing the product distribution can help in identification of the different free-radical decomposition pathways of hydroperoxides, including recombination, proton abstraction and chain scission, as well as secondary reactions. The {sup 17}O NMR spectra of thermally oxidized polyisoprene reveal fewer degradation functionalities, but exhibit an increased complexity in the type of observed degradation species due to structural features such as unsaturation and methyl branching. Alcohols and ethers formed from hydrogen abstraction and free radical termination.

More Details

Chemometric Analysis of Two Dimensional Decay Data: Application to {sup 17}O NMR Relaxation Matrices

Alam, Todd M.

The use of {sup 17}O NMR spectroscopy as a tool to investigate aging in polymer systems has recently been demonstrated. Because the natural abundance of {sup 17}O is extremely low (0.037%), the use of labeled {sup 17}O{sub 2} during the oxidation of polymers produces {sup 17}O NMR spectra whose signals arise entirely from the degradation species (i.e. signals from the bulk or unaged material are not observed). This selective isotopic labeling eliminates the impact of interference from the unaged material, cause (1) above. As discussed by Alam et al. spectral overlap between different degradation species as well as errors in quantification remains a major difficulty in {sup 17}O NMR spectroscopy. As a demonstration of the DECRA and CTBSA methods, relaxation matrices obtained from {sup 17}O NMR for model alcohol systems are evaluated. The benefits and limitations of these newly developed chemometric techniques are discussed.

More Details

(6)Li, (7)Li Nuclear Magnetic Resonance Investigation of Lithium Coordination in Binary Phosphate Glasses

Journal of Non-Crystalline Solids

Alam, Todd M.

{sup 6}Li and {sup 7}Li solid state magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy has been used to investigate the local coordination environment of lithium in a series of xLi{sub 2}O {center_dot} (1-x)P{sub 2}O{sub 5} glasses, where 0.05 {le} x {le} 0.55. Both the {sup 6}Li and {sup 7}Li show chemical shift variations with changes in the Li{sub 2}O concentration, but the observed {sup 6}Li NMR chemical shifts closely approximate the true isotropic chemical shift and can provide a measure of the lithium bonding environment. The {sup 6}Li NMR results indicate that in this series of lithium phosphate glasses the Li atoms have an average coordination between four and five. The results for the metaphosphate glass agree with the coordination number and range of chemical shifts observed for crystalline LiPO{sub 3}. An increase in the {sup 6}Li NMR chemical shift with increasing Li{sub 2}O content was observed for the entire concentration range investigated, correlating with increased cross-linking of the phosphate tetrahedral network by O-Li-O bridges. The {sup 6}Li chemical shifts were also observed to vary monotonically through the anomalous glass transition temperature (T{sub g}) minimum. This continuous chemical shift variation shows that abrupt changes in the Li coordination environment do not occur as the Li{sub 2}O concentration is increased, and such abrupt changes can not be used to explain the T{sub g} minimum.

More Details

Ab Initio Calculation of Nuclear Magnetic Resonance Chemical Shift Anisotropy Tensors 1. Influence of Basis Set on the Calculation of 31P Chemical Shifts

Alam, Todd M.

The influence of changes in the contracted Gaussian basis set used for ab initio calculations of nuclear magnetic resonance (NMR) phosphorous chemical shift anisotropy (CSA) tensors was investigated. The isotropic chemical shitl and chemical shift anisotropy were found to converge with increasing complexity of the basis set at the Hartree-Fock @IF) level. The addition of d polarization function on the phosphorous nucIei was found to have a major impact of the calculated chemical shi~ but diminished with increasing number of polarization fimctions. At least 2 d polarization fimctions are required for accurate calculations of the isotropic phosphorous chemical shift. The introduction of density fictional theory (DFT) techniques through tie use of hybrid B3LYP methods for the calculation of the phosphorous chemical shift tensor resulted in a poorer estimation of the NMR values, even though DFT techniques result in improved energy and force constant calculations. The convergence of the W parametem with increasing basis set complexity was also observed for the DFT calculations, but produced results with consistent large deviations from experiment. The use of a HF 6-31 l++G(242p) basis set represents a good compromise between accuracy of the simulation and the complexity of the calculation for future ab initio calculations of 31P NMR parameters in larger complexes.

More Details

NMR studies of bond arrangements in alkali phosphate glasses

Alam, Todd M.

Solid-state magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy has become a powerful tool for the investigation of local structure and medium range order in glasses. Previous {sup 31}P MAS NMR studies have detailed the local structure for a series of phosphate glasses. Phosphate tetrahedra within the glass network are commonly described using the Q{sup n} notation, where n = 0, 1, 2, 3 and represents the number of bridging oxygens attached to the phosphate. Using {sup 31}P MAS NMR different phosphate environments are readily identified and quantified. In this paper, the authors present a brief description of recent one dimensional (1D) {sup 6}Li, {sup 7}Li and {sup 31}P MAS experiments along with two-dimensional (2D) {sup 31}P exchange NMR experiments for a series of lithium ultraphosphate glasses. From the 2D exchange experiments the connectivities between different Q{sup n} phosphate tetrahedra were directly measured, while the 1D experiments provided a measure of the P-O-P bond angle distribution and lithium coordination number as a function of Li{sub 2}O concentration.

More Details

{sup 17}O NMR investigations of oxidative degradation in polymers

Alam, Todd M.

We have initiated studies using both solution and solid state magic angle spinning {sup 17}O NMR for a series of oxidatively aged polymers. This short note reports the solution {sup 17}O NMR for oxidatively degraded polypropylene, ethylene-propylene-diene, polyisoprene, and nitrile rubber. Enriched O{sub 2} is used during the accelerated aging. 3 figs, 7 refs.

More Details

Investigation of hydrolysis and condensation in organically modified sol-gel systems: 29Si NMR and the INEPT sequence

Materials Research Society Symposium - Proceedings

Alam, Todd M.

The spectral editing properties of the 29Si NMP, INEPT heteronuclear transfer experiment have been utilized for the identification and characterization of hydrolysis and initial condensation products in methyltrimethoxysilane (MTMS) sol-gel materials. 29Si NMR assignments in MTMS are complicated by a small spectral dispersion (approximately 0.5 ppm) and two different 29Si-1H J couplings. By using analytical expressions for the INEPT signal response with multiple heteronuclear J couplings, unambiguous spectral assignments can be made. For this organomethoxysilane the rate of hydrolysis was found to be very rapid and significantly faster than either the water- or alcohol-producing condensation reactions. The hydrolysis species of both the MTMS monomer and its initial T1 condensation products follow statistical distributions that can be directly related to the extent of the hydrolysis reactions. The role of the statistical distribution of hydrolysis products on the production and synthetic control of organically modified sol-gels is discussed.

More Details

Proposed research on class I components to test a general approach to accelerated aging under combined stress environments

Cygan, Randall T.; Jiang, Ying B.; Alam, Todd M.; Brinker, C.J.; Bunker, B.C.; Leung, Kevin; Nenoff, Tina M.; Nyman, May D.; Ockwig, Nathan O.; Orendorff, Christopher; Rempe, Susan; Singh, Seema S.; Criscenti, Louise; Stevens, Mark J.; Thurmer, Konrad; Van Swol, Frank B.; Varma, Sameer; Crozier, Paul; Feibelman, Peter J.; Houston, Jack E.; Huber, Dale L.

This report summarizes research on the aging of Class I components in environments representative of nuclear power plants. It discusses Class IE equipment used in nuclear power plants, typical environments encountered by Class IE components, and aging techniques used to qualify this equipment. General discussions of radiation chemistry of polymers and accelerated aging techniques are also included. Based on the inadequacies of present aging techniques for Class IE equipment, a proposal for an experimental program on electrical cables is presented. One of the main purposes of the proposed work is to obtain relevant data in two areas of particular concern--the effect of radiation dose rate on polymer degradation, and the importance of synergism for combined thermal and radiation environments. A new model that allows combined environment accelerated aging to be carried out is introduced, and it is shown how the experimental data to be generated can be used to test this model.

More Details
Results 201–249 of 249
Results 201–249 of 249