Publications

Results 51–75 of 235

Search results

Jump to search filters

Impact of oleylamine: oleic acid ratio on the morphology of yttria nanomaterials

Journal of Materials Science

Treadwell, LaRico J.; Boyle, Timothy J.; Bell, Nelson S.; Rodriguez, Mark A.; Muntifering, Brittany R.; Hattar, Khalid M.

The impact on the final morphology of yttria (Y2O3) nanoparticles from different ratios (100/0, 90/10, 65/35, and 50/50) of oleylamine (ON) and oleic acid (OA) via a solution precipitation route has been determined. In all instances, powder X-ray diffraction indicated that the cubic Y2O3 phase (PDF #00-025-1200) with the space group I-3a (206) had been formed. Analysis of the collected FTIR data revealed the presence of stretches and bends consistent with ON and OA, for all ratios investigated, except the 100/0. Transmission electron microscopy images revealed regular and elongated hexagons were produced for the ON (100/0) sample. As OA was added, the nanoparticle morphology changed to lamellar pillars (90/10), then irregular particles (65/35), and finally plates (50/50). The formation of the hexagonal-shaped nanoparticles was determined to be due to the preferential adsorption of ON onto the {101} planes. As OA was added to the reaction mixture, it was found that the {111} planes were preferentially coated, replacing ON from the surface, resulting in the various morphologies noted. The roles of the ratio of ON/OA in the synthesis of the nanocrystals were elucidated in the formation of the various Y2O3 morphologies, as well as a possible growth mechanism based on the experimental data.

More Details

Structural properties of scandium inorganic salts

Coordination Chemistry Reviews

Sears, Jeremiah M.; Boyle, Timothy J.

The structural properties of reported inorganic scandium (Sc) salts were reviewed, including the halide (Cl, Br, and I), nitrate, sulfate, and phosphate salts. Additional analytical techniques used for characterization of these complexes (metrical data, FTIR and 45Sc NMR spectroscopy) were tabulated. A structural comparison of Sc to select lanthanide (La, Gd, Lu) salt complexes was briefly evaluated.

More Details

Synthesis, characterization, and utility of trifluoroacetic acid lanthanide precursors for production of varied phase fluorinated lanthanide nanomaterials

Polyhedron

Sears, Jeremiah M.; Boyle, Timothy J.; Treadwell, LaRico J.; Bell, Nelson S.

The synthesis of a series of lanthanide trifluoroacetic acid (H-TFA) derivatives which contain only the TFA and its conjugate acid has been developed. From the reaction of Ln(N(SiMe3)2)3 with an excess amount of H-TFA, the products were identified as: [Ln(μ-TFA)3(H-TFA)2]n (Ln = Y, Ce, Sm, Eu, Gd, Tb, Dy), [Ln(μ-TFA)3(μ-H-TFA)]n·solv (Ln·solv = Pr·2 H-TFA, H3O+, Ho·2py, Er·py, Yb·py, H-TFA), 3[H][(TFA)La(μ-TFA)3La(TFA)(μ-TFA)2(μc-TFA)2]n ½(H2O) ½(H2O, H-TFA) (La·½(H2O) ½(H2O, H-TFA)), [(k2-TFA)Nd(μ-TFA)3]n·H-py+ (Nd·H-py+), [(py)2Tm(μ-TFA)3]n (Tm), or [Lu(μ-TFA)4Lu(μ-TFA)3·H3O+]n (Lu·H3O+). The majority of samples formed long chain polymers with 3 or 4 μ-TFA ligands. Tm was isolated with py coordinated to the metal, whereas Ho, Er, and Yb were isolated with py located within the lattice. Select samples from this set of compounds were used to generate nanomaterials under solvothermal (SOLVO) conditions using pyridine (py) or octylamine at 185 °C for 24 h. The SOLVO products were isolated as: (i) from py: La – fluocerite (LaF3, PDF 98-000-0214, R = 9.64%, 35(0) nm), Tb – terbium fluoride (TbF3, PDF 00-037-1487, R = 4.76%, 21(2) nm), Lu lutetium oxy fluoride (LuOF, PDF 00-052-0779, R = 8.24%, 8(2) nm); (ii) from octylamine: La – fluocerite/lanthanum oxide carbonate (LaF3, PDF 98-000-0214, R = 7.47%, 5(0) nm; La2O2(CO3), PDF 01-070-5539, R = 12.32%, 12(0) nm), Tb – terbium oxy fluoride (TbOF, PDF 00-008-0230, R = 7.01%, 5(0) nm); Lu – lutetium oxide (Lu2O3, PDF 00-012-0728, R = 6.52%, 6(1) nm).

More Details

Synthesis and characterization of a series of nickel(II) alkoxide precursors and their utility for Ni(0) nanoparticle production

Dalton Transactions

Treadwell, LaRico J.; Boyle, Timothy J.; Phelan, W.A.; Parkes, Marie V.; Young, David P.

A series of nickel(ii) aryloxide ([Ni(OAr)2(py)x]) precursors was synthesized from an amide-alcohol exchange using [Ni(NR2)2] in the presence of pyridine (py). The H-OAr selected were the mono- and di-ortho-substituted 2-alkyl phenols: alkyl = methyl (H-oMP), iso-propyl (H-oPP), tert-butyl (H-oBP) and 2,6-di-alkyl phenols (alkyl = di-iso-propyl (H-DIP), di-tert-butyl (H-DBP), di-phenyl (H-DPhP)). The crystalline products were solved as solvated monomers and structurally characterized as [Ni(OAr)2(py)x], where x = 4: OAr = oMP (1), oPP (2); x = 3: OAr = oBP (3), DIP (4); x = 2: OAr = DBP (5), DPhP (6). The excited states (singlet or triplet) and various geometries of 1-6 were identified by experimental UV-vis and verified by computational modeling. Magnetic susceptibility of the representative compound 4 was fit to a Curie Weiss model that yielded a magnetic moment of 4.38(3)μB consistent with a Ni2+ center. Compounds 1 and 6 were selected for decomposition studied under solution precipitation routes since they represent the two extremes of coordination. The particle size and crystalline structure were characterized using transmission electron microscopy (TEM) and powder X-ray diffraction (PXRD). The materials isolated from 1 and 6 were found by TEM to form irregular shape nanomaterials (8-15 nm), which by PXRD were found to be Ni0 hcp (PDF: 01-089-7129) and fcc (PDF: 01-070-0989), respectively.

More Details

Synthesis and characterization of a series of Group 4 phenoxy-thiol derivatives

Polyhedron

Boyle, Timothy J.; Neville, Michael L.; Parkes, Marie V.

A series of Group 4 phenoxy-thiols were developed from the reaction products of a series of metal tert-butoxides ([M(OBut)4]) with four equivalents of 4-mercaptophenol (H-4MP). The products were found by single crystal X-ray diffraction to adopt the general structure [(HOBut)(4MP)3M(μ-4MP)]2 [where M = Ti (1), Zr (2), Hf (3)] from toluene and [(py)2M(4MP)] where M = Ti (4), Zr (5) and [(py)(4MP)3Hf(μ-4MP)]2 (6) from pyridine (py). Varying the [Ti(OR)4] precursors (OR = iso-propoxide (OPri) or neo-pentoxide (ONep)) in toluene led to [(HOR)(4MP)3Ti(μ-4MP)]2 (OR = OPri (7), ONep (8)), which were structurally similar to 1. Lower stoichiometric reactions in toluene led to partial substitution by the 4MP ligands yielding [H][Ti(μ-4MP)(4MP)(ONep)3]2 (9). Independent of the stoichiometry, all of the Ti derivatives were found to be red in color, whereas the heavier congeners were colorless. Attempts to understand this phenomenon led to investigation with a series of varied -SH substituted phenols. From the reaction of H-2MP and H-3MP (2-mercaptophenol and 3-mercaptophenol, respectively), the isolated products had identical arrangements: [(ONep)2(2MP)Ti(μ,η2-2MP)]2 (10) and [(HOR)(3MP)M(μ-3MP)]2 (M/OR = Ti/ONep (11); Zr/OBut (12)) with a similar red color. Based on the simulated and observed UV-Vis spectra, it was reasoned that the color was generated due to a ligand-to-metal charge transfer for Ti that was not available for the larger congeners.

More Details
Results 51–75 of 235
Results 51–75 of 235