GDSA Overview ? Objectives Work and FY17 Accomplishments
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
ANS IHLRWM 2017 - 16th International High-Level Radioactive Waste Management Conference: Creating a Safe and Secure Energy Future for Generations to Come - Driving Toward Long-Term Storage and Disposal
Numerical simulation of a repository for heatgenerating nuclear waste in fractured crystalline rock requires a method for simulating coupled heat and fluid flow and reactive radionuclide transport in both porous media (bentonite buffer, surface sediments) and fractured rock (the repository host rock). Discrete fracture networks (DFNs), networks of two-dimensional planes distributed in a three-dimensional domain, are commonly used to simulate isothermal fluid flow and particle transport in fractures, but unless coupled to a continuum, are incapable of simulating heat conduction through the rock matrix, and therefore incapable of capturing the effects of thermally driven fluid fluxes or of coupling chemical processes to thermal processes. We present a method for mapping a stochastically generated DFN to a porous medium domain that allows representation of porous and fractured media in the same domain, captures the behavior of radionuclide transport in fractured rock, and allows simulation of coupled heat and fluid flow including heat conduction through the matrix of the fractured rock. We apply the method within Sandia's Geologic Disposal Safety Assessment (GDSA) framework to conduct a post-closure performance assessment (PA) of a generic repository for commercial spent nuclear fuel in crystalline rock. The three-dimensional, kilometer-scale model domain contains approximately 4.5 million grid cells; grid refinement captures the detail of 3, 360 individual waste packages in 42 disposal drifts. Coupled heat and fluid flow and reactive transport are solved numerically with PFLOTRAN, a massively parallel multiphase flow and reactive transport code. Simulations of multiple fracture realizations were run to 1 million years, and indicate that, because of the channeled nature of fracture flow, thermally-driven fluid fluxes associated with peak repository temperatures may be a primary means of radionuclide transport out of the saturated repository. The channeled nature of fracture flow gives rise to unique challenges in uncertainty and sensitivity quantification, as radionuclide concentrations at any given location outside the repository depend heavily on the distribution of fractures in the domain.
Abstract not provided.
ANS IHLRWM 2017 - 16th International High-Level Radioactive Waste Management Conference: Creating a Safe and Secure Energy Future for Generations to Come - Driving Toward Long-Term Storage and Disposal
An important feature required in all geological disposal system modeling is proper representation of waste package degradation and waste form dissolution. These processes are often treated as batch operations, meaning they are zero-dimensional. However, waste package canister degradation or waste form dissolution are affected by near-field conditions, and thus they must be coupled to the computational domain through the exchange of information on local conditions. Accurate waste package and waste form degradation behavior is essential because processes occurring at the batch level also affect far field conditions through heat and mass transport by advection or diffusion. Presented here is the development and performance of the Waste Form Process Model, an integrated module for waste package canister degradation and waste form dissolution developed by Sandia National Laboratories within PFLOTRAN. PFLOTRAN is an open source, massively parallel subsurface simulator for multiphase, multicomponent, and multiscale reactive flow and transport processes in porous media. PFLOTRAN is used to model geologic disposal systems for the Spent Fuel and Waste Science and Technology (SFWST) Campaign under the Spent Fuel and Waste Disposition Program of the U.S. Department of Energy (DOE) Office of Nuclear Energy.
ANS IHLRWM 2017 - 16th International High-Level Radioactive Waste Management Conference: Creating a Safe and Secure Energy Future for Generations to Come - Driving Toward Long-Term Storage and Disposal
Technology Readiness Assessment (TRA) is a formal process to aid in defining the remaining R&D needed to bring a new, complex technology system to full technical maturity. A geologic repository for high-level radioactive waste is a prototypical complex system, comprised of novel technologies and complex environmental conditions, but because it is intended to function passively and is comprised of both engineered and geologic barriers, the standard, engineered-system ("hardware") TRA process must be modified. Longstanding precedence employs a Safety Case (or Licensing Case) as the preferred vehicle for assembling all facets of knowledge to make a determination of repository system safety and deployment readiness. However, certain modifications to the established TRA process allow it to be applied advantageously in conjunction with the Safety Case. In particular, an adaptation of the established Features, Events, and Processes (FEPs) methodology can serve as a basis for a "TRA-like" maturity evaluation for various major components and subsystems of a deep geologic repository. The newly proposed Knowledge Readiness Assessment (KRA) process combines the best of both methodologies, i.e., of FEPs analysis and standard TRA evaluation, for establishing confidence in the post-closure performance of major repository components and subsystems.
Abstract not provided.
Abstract not provided.
The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) is conducting research and development (R&D) on generic deep geologic disposal systems (i.e., repositories). This report describes specific activities in FY 2016 associated with the development of a Defense Waste Repository (DWR)a for the permanent disposal of a portion of the HLW and SNF derived from national defense and research and development (R&D) activities of the DOE.
The Used Fuel Disposition Campaign (UFDC) of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (OFCT) is conducting research and development (R&D) on geologic disposal of used nuclear fuel (UNF) and high-level nuclear waste (HLW). Two of the high priorities for UFDC disposal R&D are design concept development and disposal system modeling (DOE 2011). These priorities are directly addressed in the UFDC Generic Disposal Systems Analysis (GDSA) work package, which is charged with developing a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic media (e.g., salt, granite, clay, and deep borehole disposal). This report describes specific GDSA activities in fiscal year 2016 (FY 2016) toward the development of the enhanced disposal system modeling and analysis capability for geologic disposal of nuclear waste. The GDSA framework employs the PFLOTRAN thermal-hydrologic-chemical multi-physics code and the Dakota uncertainty sampling and propagation code. Each code is designed for massively-parallel processing in a high-performance computing (HPC) environment. Multi-physics representations in PFLOTRAN are used to simulate various coupled processes including heat flow, fluid flow, waste dissolution, radionuclide release, radionuclide decay and ingrowth, precipitation and dissolution of secondary phases, and radionuclide transport through engineered barriers and natural geologic barriers to the biosphere. Dakota is used to generate sets of representative realizations and to analyze parameter sensitivity.
Deep Borehole Disposal (DBD) of high-level radioactive wastes has been considered an option for geological isolation for many years (Hess et al. 1957). Recent advances in drilling technology have decreased costs and increased reliability for large-diameter (i.e., ≥50 cm [19.7”]) boreholes to depths of several kilometers (Beswick 2008; Beswick et al. 2014). These advances have therefore also increased the feasibility of the DBD concept (Brady et al. 2009; Cornwall 2015), and the current field test design will demonstrate the DBD concept and these advances. The US Department of Energy (DOE) Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (DOE 2013) specifically recommended developing a research and development plan for DBD. DOE sought input or expression of interest from States, local communities, individuals, private groups, academia, or any other stakeholders willing to host a Deep Borehole Field Test (DBFT). The DBFT includes drilling two boreholes nominally 200m [656’] apart to approximately 5 km [16,400’] total depth, in a region where crystalline basement is expected to begin at less than 2 km depth [6,560’]. The characterization borehole (CB) is the smaller-diameter borehole (i.e., 21.6 cm [8.5”] diameter at total depth), and will be drilled first. The geologic, hydrogeologic, geochemical, geomechanical and thermal testing will take place in the CB. The field test borehole (FTB) is the larger-diameter borehole (i.e., 43.2 cm [17”] diameter at total depth). Surface handling and borehole emplacement of test package will be demonstrated using the FTB to evaluate engineering feasibility and safety of disposal operations (SNL 2016).
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.