Publications

Results 101–150 of 222

Search results

Jump to search filters

A verified conformal decomposition finite element method for implicit, many-material geometries

Journal of Computational Physics

Roberts, Scott A.; Mendoza, Hector; Brunini, Victor; Noble, David R.

As computing power rapidly increases, quickly creating a representative and accurate discretization of complex geometries arises as a major hurdle towards achieving a next generation simulation capability. Component definitions may be in the form of solid (CAD) models or derived from 3D computed tomography (CT) data, and creating a surface-conformal discretization may be required to resolve complex interfacial physics. The Conformal Decomposition Finite Element Methods (CDFEM) has been shown to be an efficient algorithm for creating conformal tetrahedral discretizations of these implicit geometries without manual mesh generation. In this work we describe an extension to CDFEM to accurately resolve the intersections of many materials within a simulation domain. This capability is demonstrated on both an analytical geometry and an image-based CT mesostructure representation consisting of hundreds of individual particles. Effective geometric and transport properties are the calculated quantities of interest. Solution verification is performed, showing CDFEM to be optimally convergent in nearly all cases. Representative volume element (RVE) size is also explored and per-sample variability quantified. Relatively large domains and small elements are required to reduce uncertainty, with recommended meshes of nearly 10 million elements still containing upwards of 30% uncertainty in certain effective properties. This work instills confidence in the applicability of CDFEM to provide insight into the behaviors of complex composite materials and provides recommendations on domain and mesh requirements.

More Details

Effects of Solar Cell Materials and Geometries on Thermally Induced Interfacial Stresses (WCPEC-7)

2018 IEEE 7th World Conference on Photovoltaic Energy Conversion, WCPEC 2018 - A Joint Conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC

Hartley, James Y.; Roberts, Scott A.

A computational study was performed to assess influences of geometric design parameters and material properties on thermally induced interfacial stresses within a packaged solar cell assembly. A Latin Hypercube Sampling approach was used, varying 36 total geometric, initial condition, and material property parameters representative of available solar cell designs, to assess the sensitivity of computed interfacial stresses to each input. Simulations consisted of a laminated 3D assembly of two cells connected by an interconnect ribbon, with resolution of the glass, encapsulant, ribbon, solder, cell, and backsheet, cycled through a temperature change of - 40°C to 85 °C. Geometry and mesh creation were automated to enable sampling over varying cell designs. The purpose of this study was to develop a methodology to investigate the interplay between cell designs and thermally induced stresses, particularly those occurring over component interfaces subject to delamination. Information on the expected drivers of interfacial stresses as well as the primary directions in which stresses arise will better define interface adhesion tests and inform accelerated stress testing to more completely characterize delamination phenomena.

More Details

Editors' Choice—Mesoscale Analysis of Conductive Binder Domain Morphology in Lithium-Ion Battery Electrodes

Journal of the Electrochemical Society

Trembacki, Bradley L.; Mistry, Aashutosh N.; Noble, David R.; Ferraro, Mark E.; Mukherjee, Partha P.; Roberts, Scott A.

Typical lithium-ion battery electrodes are porous composites comprised of active material, conductive additives, and polymeric binder, with liquid electrolyte filling the pores. The mesoscale morphology of these constituent phases has a significant impact on both electrochemical reactions and transport across the electrode, which can ultimately limit macroscale battery performance. We reconstruct published X-ray computed tomography (XCT) data from a NMC333 cathode to study mesoscale electrode behavior on an as-manufactured electrode geometry. We present and compare two distinct models that computationally generate a composite binder domain (CBD) phase that represents both the polymeric binder and conductive additives. We compare the effect of the resulting CBD morphologies on electrochemically active area, pore phase tortuosity, and effective electrical conductivity. Both dense and nanoporous CBD are considered, and we observe that acknowledging CBD nanoporosity significantly increases effective electrical conductivity by up to an order of magnitude. Properties are compared to published measurements as well as to approximate values often used in homogenized battery-scale models. All reconstructions exhibit less than 20% of the standard electrochemically active area approximation. Order of magnitude discrepancies are observed between two popular transport simulation numerical schemes (finite element method and finite volume method), highlighting the importance of careful numerical verification.

More Details

Mesoscale effective property simulations incorporating conductive binder

Journal of the Electrochemical Society

Trembacki, Bradley L.; Noble, David R.; Brunini, Victor; Ferraro, Mark E.; Roberts, Scott A.

Lithium-ion battery electrodes are composed of active material particles, binder, and conductive additives that form an electrolyte-filled porous particle composite. The mesoscale (particle-scale) interplay of electrochemistry, mechanical deformation, and transport through this tortuous multi-component network dictates the performance of a battery at the cell-level. Effective electrode properties connect mesoscale phenomena with computationally feasible battery-scale simulations. We utilize published tomography data to reconstruct a large subsection (1000+ particles) of an NMC333 cathode into a computational mesh and extract electrode-scale effective properties from finite element continuum-scale simulations. We present a novel method to preferentially place a composite binder phase throughout the mesostructure, a necessary approach due difficulty distinguishing between non-active phases in tomographic data. We compare stress generation and effective thermal, electrical, and ionic conductivities across several binder placement approaches. Isotropic lithiation-dependent mechanical swelling of the NMC particles and the consideration of strain-dependent composite binder conductivity significantly impact the resulting effective property trends and stresses generated. Our results suggest that composite binder location significantly affects mesoscale behavior, indicating that a binder coating on active particles is not sufficient and that more accurate approaches should be used when calculating effective properties that will inform battery-scale models in this inherently multi-scale battery simulation challenge.

More Details

Cabs Milestone I3 Report: Demonstration of Ability to Construct 3D Meshes of Electrodes Using Reconstructions from Micro-Tomography

Roberts, Scott A.; Ferraro, Mark E.

Mesoscale (100s of particles) electrochemical-thermal-mechanical models and simulations of NMC cathodes are a critical outcome of the CABS project. These simulations require mesostructure geometries and commensurate computational meshes on which to perform the simulations. While these geometries can be generated using a variety of methods, the highest-fidelity approach is to reconstruct the geometry directly from 3D experimental data/measurements. In this milestone report, we demonstrate our ability to create 3D computational meshes using the Conformal Decomposition Finite Element Method (CDFEM) on a selection of NMC cathodes that were imaged using X-Ray Computed Micro-Tomography (X-Ray CT, or simply XCT).

More Details
Results 101–150 of 222
Results 101–150 of 222