Publications

Results 76–100 of 139

Search results

Jump to search filters

Full long-term design response analysis of a wave energy converter

Renewable Energy

Coe, Ryan G.; Michelen, Carlos; Eckert, Aubrey C.; Sallaberry, Cedric

Efficient design of wave energy converters requires an accurate understanding of expected loads and responses during the deployment lifetime of a device. A study has been conducted to better understand best-practices for prediction of design responses in a wave energy converter. A case-study was performed in which a simplified wave energy converter was analyzed to predict several important device design responses. The application and performance of a full long-term analysis, in which numerical simulations were used to predict the device response for a large number of distinct sea states, was studied. Environmental characterization and selection of sea states for this analysis at the intended deployment site were performed using principle-components analysis. The full long-term analysis applied here was shown to be stable when implemented with a relatively low number of sea states and convergent with an increasing number of sea states. As the number of sea states utilized in the analysis was increased, predicted response levels did not change appreciably. However, uncertainty in the response levels was reduced as more sea states were utilized.

More Details

Design load analysis for wave energy converters

Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE

Van Rij, Jennifer; Yu, Yi H.; Coe, Ryan G.

This study demonstrates a systematic methodology for establishing the design loads of a wave energy converter. The proposed design load methodology incorporates existing design guidelines, where they exist, and follows a typical design progression; namely, advancing from many, quick, order-ofmagnitude accurate, conceptual stage design computations to a few, computationally intensive, high-fidelity, design validation simulations. The goal of the study is to streamline and document this process based on quantitative evaluations of the design loads' accuracy at each design step and consideration for the computational efficiency of the entire design process. For the wave energy converter, loads, and site conditions considered, this study demonstrates an efficient and accurate methodology of evaluating the design loads.

More Details

A Survey of WEC Reliability, Survival and Design Practices

Energies

Coe, Ryan G.; Yu, Yi-Hsiang; Van Rij, Jennifer

A wave energy converter must be designed to survive and function efficiently, often in highly energetic ocean environments. This represents a challenging engineering problem, comprising systematic failure mode analysis, environmental characterization, modeling, experimental testing, fatigue and extreme response analysis. While, when compared with other ocean systems such as ships and offshore platforms, there is relatively little experience in wave energy converter design, a great deal of recent work has been done within these various areas. Here, this article summarizes the general stages and workflow for wave energy converter design, relying on supporting articles to provide insight. By surveying published work on wave energy converter survival and design response analyses, this paper seeks to provide the reader with an understanding of the different components of this process and the range of methodologies that can be brought to bear. In this way, the reader is provided with a large set of tools to perform design response analyses on wave energy converters.

More Details

A comparison of control strategies for wave energy converters

International Journal of Marine Energy

Coe, Ryan G.; Bacelli, Giorgio B.; Wilson, David G.; Abdelkhalik, Ossama; Korde, Umesh A.; Robinett, Rush D.

In this study, we employ a numerical model to compare the performance of a number of wave energy converter control strategies. The controllers selected for evaluation span a wide range in their requirements for implementation. Each control strategy is evaluated using a single numerical model with a set of sea states to represent a deployment site off the coast of Newport, OR. A number of metrics, ranging from power absorption to kinematics, are employed to provide a comparison of each control strategy's performance that accounts for both relative benefits and costs. The results show a wide range of performances from the different controllers and highlight the need for a holistic design approach which considers control design as a parallel component within the larger process WEC design.

More Details

Multiresonant Feedback Control of a Three-Degree-of-Freedom Wave Energy Converter

IEEE Transactions on Sustainable Energy

Wilson, David G.; Abdelkhalik, Ossama; Zou, Shangyan; Robinett, Rush D.; Bacelli, Giorgio B.; Coe, Ryan G.; Korde, Umesh

For a three-degree-of-freedom wave energy converter (heave, pitch, and surge), the equations of motion could be coupled depending on the buoy shape. This paper presents a multiresonant feedback control, in a general framework, for this type of a wave energy converter that is modeled by linear time invariant dynamic systems. The proposed control strategy finds the optimal control in the sense that it computes the control based on the complex conjugate criteria. This control strategy is relatively easy to implement since it is a feedback control in the time domain that requires only measurements of the buoy motion. Numerical tests are presented for two different buoy shapes: a sphere and a cylinder. Regular, Bretschnieder, and Ochi-Hubble waves are tested. Simulation results show that the proposed controller harvests energy in the pitch-surge-heave modes that is about three times the energy that can be harvested using a heave-only device. This multiresonant control can also be used to shift the energy harvesting between the coupled modes, which can be exploited to eliminate one of the actuators while maintaining about the same level of energy harvesting.

More Details

WEC Extreme Conditions Modeling Sandia Summer Intern 2017 Report

Canning, Jarred; Edwards, Samuel; Esterly, Tyler R.; Seng, Bibiana E.; Smith, Laura; Stuart, Zacharia W.; Eckert, Aubrey C.; Martin, Nevin S.; Coe, Ryan G.

This report contains work completed by a group of student interns during the summer of 2017. Under the guidance of Ryan Coe, Aubrey Eckert-Gallup, and Nevin Martin, a series of interrelated projects were completed on topics relating to extreme response and survival analysis of wave energy converters (WECs). Jarred Canning studied long-term design response analysis methods for WECs. Sam Edwards studied how variation in the selection of an environmental contour affects the characterization of WEC response in extreme conditions. Sam also led the integration of various components of this report and overall editing. Tyler Esterly produced a catalog of analyses for different ocean sites. Bibiana Seng studied clustering analyses for comparing the wave environments of different ocean sites. Lori Smith performed a comparison between analyses conducted using spectral wave data and analyses using deterministic time-domain wave data. William ("Zach") Stuart studied the sensitivity and convergence of environmental contour methods.

More Details

System identification of a heaving point absorber: Design of experiment and device modeling

Energies

Bacelli, Giorgio B.; Coe, Ryan G.; Patterson, David; Wilson, David G.

Empirically based modeling is an essential aspect of design for a wave energy converter. Empirically based models are used in structural, mechanical and control design processes, as well as for performance prediction. Both the design of experiments and methods used in system identification have a strong impact on the quality of the resulting model. This study considers the system identification and model validation process based on data collected from a wave tank test of a model-scale wave energy converter. Experimental design and data processing techniques based on general system identification procedures are discussed and compared with the practices often followed for wave tank testing. The general system identification processes are shown to have a number of advantages, including an increased signal-to-noise ratio, reduced experimental time and higher frequency resolution. The experimental wave tank data is used to produce multiple models using different formulations to represent the dynamics of the wave energy converter. These models are validated and their performance is compared against one another. While most models of wave energy converters use a formulation with surface elevation as an input, this study shows that a model using a hull pressure measurement to incorporate the wave excitation phenomenon has better accuracy.

More Details
Results 76–100 of 139
Results 76–100 of 139