Publications

7 Results

Search results

Jump to search filters

Feedback Resonating Control for a Wave Energy Converter

IEEE Transactions on Industry Applications

Bacelli, Giorgio B.; Nevarez, Victor N.; Coe, Ryan G.; Wilson, David G.

Through the use of advanced control techniques, wave energy converters (WECs) can achieve substantial increases in energy absorption. The motion of the WEC device is a significant contribution to the energy absorbed by the device. Reactive (complex conjugate) control maximizes the energy absorption due to the impedance matching. The issue with complex conjugate control is that, in general, the controller is noncausal, which requires prediction of the incoming waves. This article explores the potential of employing system identification techniques to build a causal transfer function that approximates the complex conjugate controller over a finite frequency band of interest. This approach is quite viable given the band-limited nature of ocean waves. The resulting controller is stable, and the average efficiency of the power captured by the causal controller in realistic ocean waves is 99%, when compared to the noncausal complex conjugate.

More Details

A comparative study on wave prediction for WECs

Coe, Ryan G.; Bacelli, Giorgio B.; Cho, Hancheol C.; Nevarez, Victor N.

The idea of acausality for control of a wave energy converter (WEC) is a concept that has been popular since the birth of modern wave energy research in the 1970s. This concept has led to considerable research into wave prediction and feedforward WEC control algorithms. However, the findings in this report mostly negate the need for wave prediction to improve WEC energy absorption, and favor instead feedback driven control strategies. Feedback control is shown to provide performance that rivals a prediction-based controller, which has been unrealistically assumed to have perfect prediction.

More Details

Feedback Resonating Control for a Wave Energy Converter

SPEEDAM 2018 - Proceedings: International Symposium on Power Electronics, Electrical Drives, Automation and Motion

Nevarez, Victor N.; Bacelli, Giorgio B.; Coe, Ryan G.; Wilson, David G.

Through the use of advanced control techniques, wave energy converters have significantly improved energy absorption. The motion of the WEC device is a significant contribution to the energy absorbed by the device. Reactive control (complex conjugate control) maximizes the energy absorption due to the impedance matching. The issue with complex conjugate control is that the controller is non-causal, which requires prediction into the oncoming waves to the device. This paper explores the potential of using system identification (SID) techniques to build a causal transfer function that approximates the complex conjugate controller over a specific frequency band of interest. The resulting controller is stable, and the average efficiency of the power captured by the causal controller is 99%, when compared to the non-causal complex conjugate.

More Details

A comparative study on wave prediction for WECs

Coe, Ryan G.; Bacelli, Giorgio B.; Cho, Hancheol C.; Nevarez, Victor N.

The idea of acausality for control of a wave energy converter (WEC) is a concept that has been popular since the birth of modern wave energy research in the 1970s. This concept has led to considerable research into wave prediction and feedforward WEC control algorithms. However, the findings in this report mostly negate the need for wave prediction to improve WEC energy absorption, and favor instead feedback driven control strategies. Feedback control is shown to provide performance that rivals a prediction-based controller, which has been unrealistically assumed to have perfect prediction. It is well known in classical control engineering that perfect knowledge of past and future events will always lead to higher performing systems. However, it is also well known that the underlying system must be well-designed; control cannot fix a bad design. Additionally, one must consider the practical application of a control design, which relies on measurements and actuation systems. There are major implications to cost and reliability when relying on remote sensors requiring real-time data-streaming (e.g., remote wave buoys). This report shows that for a well-designed WEC, in which closed loop dynamics is considered since early stages of design, a suboptimal controller using no prediction can achieve more than 90% of the theoretical maximum. A predictionless feedback resonating (FBR) controller performs within 0.1% percent of a controller with perfect future knowledge (something which is not practically attainable). Given the major challenges with accurate and robust wave prediction, this result provides a major argument and incentive for utilizing feedback for WEC control. Implementation of these feedback strategies is readily attainable, while the strategy requiring perfect wave prediction will demand an unknown number of additional years to research and develop, all in the service of a marginal 1% benefit.

More Details
7 Results
7 Results